单自由度体系因初位移[tex=2.643x1.0]PMV89g8t3oJO+zfZgikuew==[/tex]而作小阻尼自由振动,测出一个周期后的位移为[tex=2.643x1.0]lw+qmEg6WJi/x2390aZh3w==[/tex],则体系的阻尼比为 ,振动[tex=0.5x1.0]swhA5SpCD6lPteGlwRbm9g==[/tex]个周期后的位移为 cm。
举一反三
- 一单自由度振动体系,由初始位移0.685cm,初始速度为零产生自由振动,振动一个周期后最大位移为0.50cm,体系的阻尼比为() A: ζ=0.05 B: ζ=0.10 C: ζ=0.15 D: ζ=0.20
- 通过图示结构做自由振动实验。用油压千斤顶使横梁产生侧向位移, 当梁侧移[tex=3.071x1.0]Mq43b/4NNy5YpXldkejjBZOpk6UDjBSLuasqs/Y9b18=[/tex] 时, 需加侧向 力[tex=4.071x1.0]KIjfTW4tm//C3acpu78l3sAPZiUSDGriIzluKlsGNQs=[/tex] 。在此初位移状态下放松横梁, 经过一个周期 [tex=4.643x1.357]7biCulo2F/hUA7ljPMylGFHMpv1nkSJ6Aqarn7LCGF0=[/tex]后, 横梁最大位移仅为 [tex=3.929x1.143]62D3BcJViZQS81oNPSbkcNTBTZT8JAWkAhmLae7Px6k=[/tex]试求:(a) 结构的重量 [tex=1.071x1.0]yZFPwTympSB9LRPU0rbhsw==[/tex](假设重量集中于横梁上)。(b) 阻尼比(c) 振动 6 周后的位移振幅。[img=202x136]17cfe35fb081a79.png[/img]
- 如图题 9-2 (7) 所示简支梁,[tex=15.857x2.429]g8YU6/u+Uhb4WF8LgJvDUjrpRzT3AUD2Mu+A+wUy3iU++VWlkEudbD0f/QiKcUyV8iptjJEdaV3qEViIR73rUeK5mNby3KI8PreUhgu/m0E=[/tex], 质点 m由初位移 [tex=3.429x1.214]TInsEVvgqPfOxd/gYATjKg==[/tex] 产生无阻尼自由振动,则质点的振幅 A=[u] [/u]; t=3 s 时质点的位移y(3)=[u] [/u],速度 y(3)=[u] [/u][img=248x166]179fa0a2bc673eb.png[/img]
- 由初位移使无阻尼单自由度体系产生自由振动,其振幅值等于初位移。
- 研究长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex],一端固定,另一端自由,初始位移为[tex=1.214x1.0]oRQs3fUc5jUXOKKnlCZAtw==[/tex]而初始速度为零的弦的自由振动情况。