若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵,当有一个常数项不为 0 的多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]使[tex=3.357x1.357]JMHm7o/8x5x9TCrU9tmYSQ==[/tex]时,[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值一定全不为0。
举一反三
- 求证: 若 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个互不相同的特征值, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征多项式 和极小多项式相等.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵,[tex=6.357x1.214]ktGtmiDKstx7m1f25N9jwZT5aYsjOrhIKRDobbavw6Q=[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个特征值,求行列式 [tex=3.357x1.357]m48DvRt0hjjMuVqGpYAvJg==[/tex] 的值.
- 若[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足[tex=5.714x1.357]gHrEoMXRoYD6ylIB8k+Dmg==[/tex],则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为[input=type:blank,size:4][/input]。
- 当 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 适合条件 ( ) 时,它必相似于对角阵. 未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0有\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]\xa0个不同的特征向富', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是上二角矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0有\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]\xa0个不同的特征值', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是可逆矩阵'], 'type': 102}
- 若[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足[tex=8.214x1.357]03v+M/HhO3b3MPqSzGJPJCsG9Vb3DVOhHvfguin/lQI=[/tex],则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为[input=type:blank,size:4][/input]。