已知[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的最小多项式 [tex=6.786x1.357]1eNdIGRQcK4r/zHVB+D7uK2AYcWjpo2OKPry20Cf8S1r/EgIPnPPE9urz8hXqE+w[/tex] 求[tex=6.714x2.786]UwKAx/AIX9lGAocRZ6Xn89ZZcgNvP1GDRw4VoljDZe99LcvZFSJj/WX39y89hUjX0lSak0f+2uPUbJUIu+isPg==[/tex]的最小多项式.
举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 Jordan 形矩阵:[tex=12.571x1.357]12yeUtj3b2wqLrelhi+1y0/ET2lI6CLSXJ3yeb3tf8J69rprtAjcFJZooXn3qyccsqKvM657CprmKnVrrfIvSe7nkT35HPxM2uWFRaJCzl0=[/tex] 求 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的最小多项式.
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 已知[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵,且满足[tex=6.786x1.357]J+RstYfAEhzu30tt+psuRhMKRuZMTJjXHRhelau0eJI=[/tex] (1) 证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]可逆,并求[tex=1.714x1.214]ehC1Fy05fIHTeRCJHyodYA==[/tex];(2) 若[tex=2.643x1.357]UmLV2A1CdZWQv7CRGUJlsA==[/tex],求[tex=3.857x1.357]QCUaNnxzfyLzKrHDNVrTqQ==[/tex]的值.
- >>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']
- 已知[tex=7.786x3.5]QN0fTQbn6M33pU3gx/S2sjK5reBfyeNY2er5BSmUnP2bJk2RKrHcOTktn0jwS2dXnOq4wvcctaNp3MMzqUus1lKKm6qGoI6CMx/tFS3/bJZ8Yr04zVcm3wuDtHoJ6IW9[/tex],求矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的秩=( )。 未知类型:{'options': ['1', '2', '3', '4'], 'type': 102}