A,B为n阶可逆矩阵,若AB=BA,则(AB)-1=A-1B-1.A,B为n阶可逆矩阵,则(AB)-1=A-1B-1?
举一反三
- 若\(A,B\)都是n阶可逆矩阵,且满足\(AB=BA\)则下述结论错误的是 A: \(A^{-1}B=BA^{-1}\) B: \(AB^{-1}=B^{-1}A\) C: \(A^{-1}B^{-1}=B^{-1}A^{-1}\) D: \(BA^{-1}=AB^{-1}\)
- 若同阶方阵\(A\)和\(B\)均可逆,则矩阵\(AB\)也是可逆的,且\((AB)^{-1}=B^{-1}A^{-1}\)。
- 设A,B都是n阶可逆矩阵(n>1),则下列式子成立的是() A: |AB|=|A||B| B: (A+B)-1=A-1+B-1 C: AB=BA D: |A+B|-1=|A|-1+|B|-1
- 设A,B均为n阶可逆矩阵,则下列各式中正确的是( )。 A: (A+B)T=AT+BT B: (A+B)-1=A-1+B-1 C: (AB)-1=A-1B-1 D: (AB)T=ATBT
- 设A、B都是n阶可逆矩阵,且(AB)2=I,则(BA)2的值为()。 A: I B: 0 C: 1 D: 1/2