设有长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex]的均匀细杆,一端保持温度为[tex=0.929x1.0]M6rCjWOyyOXOB1PmbinM2A==[/tex],另一端绝热.杆的初温为 0 .求杆中温度的分布和变化.
举一反三
- 设初始温度为零,长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex]的均匀细杆,当杆的一端温度为[tex=0.929x1.0]M6rCjWOyyOXOB1PmbinM2A==[/tex],而另一端及杆的侧面对于周围介质热绝缘时,求杆中的温度分布.
- 长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex]的杆,侧面和[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]端绝热,另一端[tex=1.714x1.0]OFSQaAQTidbnVE7HphlqPw==[/tex]与外界按Newton冷却定律交换热量(设外界温度为0),初始时刻杆内温度为常数[tex=0.929x1.0]M6rCjWOyyOXOB1PmbinM2A==[/tex],求杆内温度分布.
- 求解细杆的热传导问题。杆长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex],初如温度为均匀的[tex=0.929x1.0]M6rCjWOyyOXOB1PmbinM2A==[/tex],两端温度分另保持为[tex=0.929x1.0]6ajasqZpuIbDhIXAyBtsFg==[/tex]和[tex=0.929x1.0]uAwLQBNqnyRiVTDw5VUb5Q==[/tex]。
- 一长为l的均匀导热细杆,杆上有热源,单位长度杆上的热源强度为[tex=7.857x1.357]nCFy5eGsoFZA0yOuuUqVf02jYVQExVGeNzluBeAzgbQ=[/tex]端绝热,[tex=1.714x1.0]z+3PraJ7SDoHa3jz672t+w==[/tex]端保持0℃,初始温度分布为[tex=3.929x1.357]WagE2Q2ni93CvVVKcmW72g==[/tex],试求杆上各处温度如何随时间变化的?其中c为杆的比热容,[tex=0.571x1.0]BMX8X5xI0h1MuijqrEhCyw==[/tex]为杆的线密度,[tex=0.929x1.0]aU2z7XI+wLpAUTbUnCYc1Q==[/tex]为常数,侧面绝热.
- 有一根均匀弹性细杆,长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex],一端固定,另一端受外力 [tex=4.786x1.0]06FQuz8uV5PgBt57DNOI9H7nMJczEJRN/ixtklR3kPM=[/tex] 作用.杆的初始位移与速度都为 0,求杆的纵向振动规律.