证明: 高斯整数环 [tex=1.643x1.357]tH/htQSLgafmUJPqLqUFAg==[/tex] 同构于 [tex=5.643x1.571]EbZYyg5MywIuQmXnllZbt3/LhNstkj86IMw3WObFl/Y=[/tex]。
举一反三
- 设[tex=12.214x1.571]f+9LX3tLaSP/AAglco38tjTH0nr0wZs65h+IjNs9PWWLMAdLSSvncHN9mhDB6LWE+nML+iGW8MYFmagV+a1xrw==[/tex]证明[tex=1.357x1.0]ZV6ylWp4LDR9OimVa9Iisw==[/tex]关于复数加法和乘法构成环,称为高斯整数环.
- 设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]到环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同构, 证明: [tex=1.571x1.429]WwcGTNxNgqKGUcObs50zWg==[/tex]是环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]到环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同构.
- 证明 [tex=2.0x1.357]En60CoUrf9io4Fiyk7XGIA==[/tex] 同构于 [tex=3.643x1.214]5W0BiFtm4IWIlW+yCogUeLvEjUIFwWMYnbLqCQHIH33eOpkjSKF/o1106NUt5hmw[/tex]
- 设I(x):x是整数;N(x):x是负数;S(x,y):y是x的平方命题“任何整数的平方非负”可表示为谓词公式 未知类型:{'options': ['[tex=11.929x1.357]Ab8zVcSaawMRd84sw7i/JAhyPtafOzIiYwAO+plGfU5YAO/QV3YAB0GXAXRhZ7CliwQzjDdB7FbEZsDooWfNcKY5XHTFYR6Idofr8S7Wax4=[/tex]', '[tex=11.214x1.357]Vs8Vcw/zPN7kvQW5F7NycC9PlK+v4vkWJ4hyjFXkOftd5yicp99G5Tnp+KzILEwlHDVGwqo5md6rK5TfGKT6pg==[/tex]', '[tex=11.214x1.357]Ab8zVcSaawMRd84sw7i/JPLc5lkPb0vCB3HAoQdCvLgUiouuuSbyQIQ62rJKADX6FQeTBBqnQa6q/6Qzw2KRYw==[/tex]', '[tex=10.929x1.357]mX5PRaABESRf9QDOAojNZuqee9gfCLdnz+se+AlyZp5SHDOcNaBoGKl0MgSjkAb89Uw7a1sL8h1OT0gFb59yAg==[/tex]'], 'type': 102}
- 证明: 整数加群 [tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex] 与偶数加群[tex=1.214x1.0]+V46ub7nxPznegKWRX7v4g==[/tex]同构。