将函数 [tex=7.0x1.357]b3dJ0zD0oMYnjJpbKt6XSnfDZljq9kMh+wwkEKD+lmQ=[/tex] 在指定点处展开为幂级数,并确定收敛区间。
解:[tex=10.786x1.357]jF3dZRm3y7otob9QvtSePVrNkKEqv7ACL8bzR2bJN/0=[/tex]当 [tex=6.357x1.143]zQX6wQ6eXqLq0x8hw8phhS/EkCr9PNiDDVDM329atBQ=[/tex],即当 [tex=4.286x1.143]k4y5zaBsWtwaViu0AF7srdH8ynZURpDwHufbb+THtpg=[/tex] 时,有[tex=12.0x2.714]/lM7lvY4K2XfzrATaOOR5y5KiJ0JDH8NHic4hJJRYNQsqUiJsVbf5b6PQ8jtLf8/SavH8Cs8cdFYp3rAqQ2AeQ==[/tex]
举一反三
- 将函数 [tex=6.214x1.357]SNZZ9jKxwEwX2yWuJmMgFTUziI6I7Gr4OFu/LxrO9Ds=[/tex] 在指定点处展开为幂级数,并确定收敛区间。
- 将函数 [tex=6.929x1.357]IrmQ763Q7kQSEFKtKnHftk7LQnkw9BMcMrN0RGZjAYo=[/tex] 展开为 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 的幂级数,并确定收敛区间。
- 将函数 [tex=4.357x1.571]g5OJWy9VE/dI/lpdbJKjJAfyH3f2aBXN4j+h4FvxK74=[/tex] 展开为 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 的幂级数,并确定收敛区间。
- 将函数 [tex=5.143x1.5]uqRpqLoc/gaTLrtOe85fB/kXfx19ApCluGPZjOhghUE=[/tex] 展开为 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 的幂级数,并确定收敛区间。
- 将下列函数在指定点处展开成幂级数,并求其收敛区间:[tex=2.143x2.429]AtE9hS5B3h5EIJQ52jiukQ==[/tex],在[tex=2.214x1.214]o2uB3hpWAfOOe9icF2+OQg==[/tex].
内容
- 0
将下列函数在指定点处展开成幂级数,并求其收敛区间:[tex=2.143x0.786]7sCqPKbP66hcrOPfxoYK+Q==[/tex], 在 [tex=2.714x2.143]tJvfbHNtklOkSUO4tPzTIeuEBHpD8Z0ZvTT5hucHJ8c=[/tex].
- 1
将下列函数在指定点处展开成幂级数,并求其收敛区间:[tex=4.357x2.429]BOy5ozFZQtC8KrgEMS3AsFfLQNjjAnDP9aM/XMvutpo=[/tex], 在 [tex=2.214x1.214]o2uB3hpWAfOOe9icF2+OQg==[/tex].
- 2
求该函数在指定点处的泰勒级数,并求其收敛域:[tex=7.0x1.357]vGJ50zKC8gdsci5oBcei/I5vRWiU8Sjr20jxs/J2Rag=[/tex]
- 3
将下列函数在指定点处展开成幂级数,并求其收敛区间: [tex=1.214x2.357]LPNgIfSpSvzTpeCN4IyxykWDaHbNYRAHep5+U3/Yw1Y=[/tex], 在 [tex=2.214x1.214]wORMqunpzCG/1+t8jB2euw==[/tex].
- 4
将下列函数在指定点展开为 Taylor 级数,并给出其收敛半径:[tex=1.929x1.0]8rtnijoNrKHMokzN2xhDGQ==[/tex], 在[tex=3.0x0.786]DSVPyuqQ0TyJ/ayKKKflaw==[/tex]展开.