利用行初等变换法求下列矩阵的逆矩阵.[tex=6.143x3.5]jcCMHflCR8OS9TosV6N5vEN9zK3ymlxcCM1AlkizbdTS+LqRkhGxDJ1MolHLUf+qhQyWFknW7kefmlRWpoL0V8zyc2tHTVOaCwudWMvty54=[/tex]
举一反三
- 1.(30分)()已知矩阵A=[3()4()-1()1()-9()10;()6()5()0()7()4()-16;()1()-4()7()-1()6()-8;()2()-4()5()-6()()12()-8;()-3()6()-7()8()-1()1;()8()-4()9()1()3()0]()写出完成下列操作的命令:()(1)()将矩阵A的第2-5行中第1,3,5列元素赋给矩阵B;()(2)()删除矩阵A的第7号元素;()(3)()将矩阵A的每个元素加上30;()(4)()求矩阵A的大小和维数;()(5)()将矩阵A的右下角3×2矩阵构成矩阵C;()(6)()输出[-5,5]范围内的所有元素;
- 将矩阵a=[1 2 3;4 5 6;7 8 9]改变成 b=[3 6 9;2 5 8;1 4 7]的命令是( )。
- 输出九九乘法表。 1 2 3 4 5 6 7 8 9 --------------------------------------------------------------------- 1*1=1 2*1=2 2*2=4 3*1=3 3*2=6 3*3=9 4*1=4 4*2=8 4*3=12 4*4=16 5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 9*1=9 9*2=18 9*3=27 9*4=36 9*5=45 9*6=54 9*7=63 9*8=72 9*9=81
- 【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=
- 【单选题】MATLAB中指令:a = 1: 2: 10,生成矩阵a,矩阵对应矩阵() A. [1 3 5 7 9 11] B. [1 3 5 7 9 ] C. [1 3 5 7] D. [2 4 6 8]