• 2022-07-23
    Solve $n \in \mathbb{N}, \int_0^{\frac{\pi}{2}}(\sin^n{x}-\cos^n{x})dx=$ :
    ______
  • 0

    内容

    • 0

      函数$f(x)=\arcsin(\sin x)$的傅里叶级数展开式为 A: $x$ B: $$\frac{4}{\pi}\sum_{n=0}^{\infty}\frac{(-1)^n\sin(2n+1)x}{(2n+1)^2}$$ C: $$\frac{4}{\pi}\sum_{n=1}^{\infty}\frac{(-1)^n\sin(2n+1)x}{(2n+1)^2}$$ D: $$\frac{4}{\pi}\sum_{n=1}^{\infty}\frac{(-1)^{n-1}\sin(2n+1)x}{(2n+1)^2}$$

    • 1

      Solve $ \int_0^{\pi}\cos^9{x}dx=$ :<br/>______

    • 2

      中国大学MOOC: 下列程序的运行结果是( )。x=0:pi/100:2*pi;for n=1:2:10 plot(n*sin(x),n*cos(x)) hold onendaxis square

    • 3

      已知\( {y^{(n)}} = \cos x \),则\( {y^{(n + 2)}} \)为( ). A: \( \sin x \) B: \( - \sin x \) C: \( \cos x \) D: \( - \cos x \)

    • 4

      积分\(\int_0^1 (x\sin\frac{1}{x^2} - \frac{1}{x}\cos\frac{1}{x^2})dx\) (不计算积分, 由判别法直接判断)