设n阶方阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的n个特征值为1, 2, …,n, 求[tex=3.214x1.286]FhYjWLVqRijEYAjDg/ic+A==[/tex]
举一反三
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为n阶方阵,若[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与所有n阶方阵乘法可换,则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]一定是数量矩阵.
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为n阶方阵,证明:[tex=4.286x1.286]3QOJKNhI8EAPkDViGKAF3h0KnCn3pR/beFZmGpCb/p4=[/tex]零是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的一个特征值。
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶方阵,且[tex=3.214x1.286]Jp3NPd28HtxS6a0VDv55PA==[/tex],证明[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值只能是0或1.
- 设[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶方阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]满足[tex=8.071x1.286]zrw/yYsXz/AN+dp7RQIp8f502ugviyOvvml3uEvf0to=[/tex],证明:[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值只能是1或2 .
- 设 3 阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值互不相同,若行列式[tex=3.071x1.286]FYCnFYQQa8C3I+O2sfSSGA==[/tex], 则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩为 A: 0 B: 1 C: 2 D: 3