如果[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]满足等式[tex=3.286x1.286]kF0p2Zb7IglpOGFtdiKd5Q==[/tex],[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]是一个正整数.证明:[tex=16.5x1.286]P3GV2WYbEQVrNmUq8DgCXbUi4rdR2HhdDzqZqi5zffrGNR6yistSJ8cB7YcEd/s7b0cudT2PEKwfKsyqnwWlSA==[/tex].
举一反三
- 试证:[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶方阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]若满足下列三个条件中的两个,则满足第三个.(1)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]对合(即[tex=3.286x1.286]UYeZQ7ctQhujC8g1CvD2aw==[/tex]);(2)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]正交(即[tex=4.143x1.286]ipHnU2E6ffERGyrFE1fc9kE2N9mFcWmeGSLHv9NAmP8=[/tex]);(3)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]对称(即[tex=3.429x1.286]qB0DVTOnJKxkmsLEs1Xg1Q==[/tex]).
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex] 阶方阵,且[tex=3.0x1.286]JIpfIKTfZjUKIUdEgTdN7A==[/tex]([tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]为某一正整数 ), 则 未知类型:{'options': ['[tex=2.571x1.286]6ITAjF7rsnuikjAFpIwBOA==[/tex]', '[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]有一个不为零的特征值', '[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值全为零', '[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]有 [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]个线性无关的特征向量'], 'type': 102}
- 证明性质7.4.1:设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是正定矩阵,则(1)[tex=1.286x1.286]I/09VlJojFBZQlWpvi/KHQ==[/tex]为正定矩阵,其中[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]为任意正实数。(2)[tex=1.714x1.286]TO1yVSeu6VTkH5eqe0g3AQ==[/tex]为正定矩阵。(3)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的伴随矩阵[tex=1.143x1.286]5WX0zEPSvFFLZ40WpRWDWQ==[/tex]为正定矩阵。(4)[tex=1.214x1.286]861032IuvLpLlBDX6HDk6Q==[/tex]为正定矩阵,其中[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]为任意整数。(5)[tex=2.929x1.286]IEeTi5VuX3RXkozn+jPFyg==[/tex]为正定矩阵,其中[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]为可逆实矩阵。
- 设 3 阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值互不相同,若行列式[tex=3.071x1.286]FYCnFYQQa8C3I+O2sfSSGA==[/tex], 则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩为 A: 0 B: 1 C: 2 D: 3
- 设[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶方阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]满足[tex=8.071x1.286]zrw/yYsXz/AN+dp7RQIp8f502ugviyOvvml3uEvf0to=[/tex],证明:[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值只能是1或2 .