• 2022-07-27
    设[tex=1.643x1.286]G+YhXSa7jurfipYEGhOheA==[/tex]在[tex=2.643x1.286]IX8IuKGq1foKl3pSAuE5yAOEHCx03vTEUzdPcQj5K+w=[/tex]内连续可导,[tex=7.5x1.286]Eogaj7RbWq2Cd7aBB3fq8wxaIJLqyNULOHU9lNcFOgY=[/tex],[tex=8.857x1.714]P5JDpZRcs/6rtUvftY3l8UCNBXKqcii8rqn9gNnSAV35zqsxUtvz0URtELZM6VKI59UttH/pWhk4/X/OklHTzLu788MwIhF/f7jPj9iVBfeBSypSvotPzrgVgkmPJA46[/tex], [tex=2.286x1.286]q0r5GWrYLihOEIwV4SvPJA==[/tex]是中心在原点半径为1的球面.证明:[tex=12.0x4.143]CHeu24N6LkUG91C/Qgg4Fu/iQSMA6F6255+OGWFx08TY5QwotKtcYUnCYePrhedOKNrGfvR+0ZrA6WkRPemDgd4A2ohO8vYwhvRZ/5+8jJKVM5sRazjexKdknB1+5pLbfjv5XS8pvC+KasEc2U2Oeg==[/tex][tex=2.143x1.286]qbD4rtr5HQ/5Vo+R2rMJsA==[/tex],其中[tex=4.286x1.286]ILBXTzTdXzAZKSMGKqiWInMNsbQJSmq/E0xXPVpw0X4=[/tex][tex=2.714x1.286]bj1j8liF8BcqF9bqjaRTRw==[/tex],[tex=0.857x1.286]VtHyCG+ZQg7fAIyRU+W9ow==[/tex],[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex],[tex=0.571x1.286]QPadlhZ3vYN/Hi29gpTrFw==[/tex]为常数.
  • 证明:[tex=8.071x3.0]WeMvPOmGFAf5QM/UNkGsC8tdjk98CG75ZereD28uJjKE6w/iFP8FR4kAp5Ax6gUMs6kbzhpmEb3TXP0peUT1vxN6X/P9ou2Gg5N9vvinGgk=[/tex][tex=7.857x1.643]868iDooxC5rijKEMDC0gXrKSU2+0mvfZ5Hna07P/ye/m3SSsXCM4o9FDMJ7ykiHoT/7RdzkHve/LBz+mfRPJxmQB/zH2p2YVlC6lGHi92uAzoM32/a/tFSMNINRiHmZ7[/tex][tex=14.5x2.5]Dzp/FBt2IaiORGHfu62kvB1oyPKGAvQVv8skRpoxX3SNrQdczZSdAMyqNYtBIwg1LjO06iVaPIxrNS+V4AyWg/8KmLCVn/ZI0AXRr5b+xIp/Ir+aiEOk7NTlNLLhssZV[/tex][tex=10.214x2.5]Dzp/FBt2IaiORGHfu62kvMm1B1vVv0TgRfZC/EnuUmQM9chV4dNu2cgGfjzCqkUy3f7rVdWTE/Tj4lftLLwnjdNz+ezHEIS4xCuUriCX9XonewpWBN3ZX+ISOVxIEExHzJp8l+6IyEHiMqK9hezoHw==[/tex][tex=5.429x1.286]O6P/3wyFrfT0AkAU3hQc7KT8PxJqQt6Vg2JsAJVfW3M=[/tex][tex=6.214x2.429]8b+hjoT15F7oDJ67WbRStcvIM+PjLa1d/wzQsWiuMc45hfytY0Vpd6wf4KAhHG96[/tex][tex=7.643x2.429]4yG5j8P/3h8fcEIVmQnw19AZudGmm2Vd5n8byuOOM4y4jPgFd+CsuRWvb7sHhaBmKI2ZWzRxrGk4QoInDUDkpw==[/tex][tex=9.071x2.429]j3C17KfrgJ8QfDqwDFizEzHagqfjrUQ0ENLamQ0r7slY9eMuv006yNCsrOhOaNBnqm+68GqOc2JYmKRHGk0w3/Bq5kijQ9nE54uXk5zsJC0=[/tex][tex=7.286x2.429]/fVNcXtXgIIuomT0Xl01eceGdSc6fbIvoG01ceYblpClXC7ZwuluEtGUXCGav2EY[/tex][tex=5.5x1.5]ZvAXDe/7wswJuAxeOdIDrWy/K3CY98DIqdCaPXWROWxhD9QGCnQ4WpLaec7p59gKi89AjdbNU2Z4S888RrFLJA==[/tex][tex=2.143x1.286]qbD4rtr5HQ/5Vo+R2rMJsA==[/tex].[br][/br]

    举一反三

    内容

    • 0

      假设“☆”是一种新的运算,若3☆2=3×4,6☆3=6×7×8,x☆4=840(x>0),那么x等于: A: 2 B: 3 C: 4 D: 5 E: 6 F: 7 G: 8 H: 9

    • 1

      若要将一个长度为N=16的序列x(n)重新位倒序,作为某一FFT算法的输入,则位倒序后序列的样本序号为( )。 A: x(15), x(14), x(13), x(12), x(11), x(10), x(9), x(8), x(7), x(6),<br/>x(5), x(4), x(3), x(2), x(1), x(0) B: x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7), x(8), x(12), x(10),<br/>x(14), x(9), x(13), x(11), x(15) C: x(0), x(2), x(4), x(6), x(8), x(10), x(12), x(14), x(1), x(3), x(5),<br/>x(7), x(9), x(11), x(13), x(15) D: x(0), x(8), x(4), x(12), x(2), x(10), x(6), x(14), x(1), x(9), x(5),<br/>x(13), x(3), x(11), x(7), x(15)

    • 2

       对 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的不同值,分别求出循环群[tex=1.143x1.214]StMMJ6qThnpokZJIPGrdFyP3vrLnUdltYxmLxjw8za8=[/tex]的所有生成元和所有子群。(1) 7;           (2) 8;               (3)10 ;(4) 14 ;         (5) 15             (6) 18 。

    • 3

      已知a=&#91;1 2 3; 4 5 6; 7 8 9&#93;,执行命令:a(&#91;3,1&#93;,:)=a(&#91;1,3&#93;,:),a将变为( )。 A: [4 5 6;4 5 6;4 5 6] B: [7 8 9;4 5 6;1 2 3] C: [2 2 2;5 5 5;8 8 8] D: [3 2 1;6 5 4;9 8 7]

    • 4

      判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]