• 2022-07-26
    在曲线族[tex=8.286x1.571]Uzb0sLv7VSKfYCdwVGlVT1/Z9j4z1Gh2YpFaivIlCJA=[/tex]中试选一条曲线,使得这条曲线和它在[tex=3.0x1.357]dmsxkZ8BGxBR+JVyc5JPUg==[/tex]及[tex=2.286x1.357]z/lVCV5p/Eb8PwFd8UxC5g==[/tex]两点处的法线所围成的图形面积,比这一族曲线中其他曲线以同样办法围成图形的面积都小(如图)[img=130x135]1775e1211463c89.png[/img]
  • 解:曲线[tex=5.071x1.571]Uzb0sLv7VSKfYCdwVGlVT8tVlsIRZPCG9JseVcbt++0=[/tex]在[tex=3.0x1.357]dmsxkZ8BGxBR+JVyc5JPUg==[/tex],[tex=2.286x1.357]z/lVCV5p/Eb8PwFd8UxC5g==[/tex]两点处切线的斜率分别为[tex=3.143x1.214]xtZyjTqmkNuDf844yFPBqQ==[/tex],法线的斜率分别为[tex=4.071x2.357]HCRPXC2Rt6V+Vds81KmyUSC5/SWZDukyU9nmzHhYox0=[/tex],法线的方程分别为[tex=12.357x2.357]TcaisD68KUBSRK1wviDucoGb9U+wkH5HmCgWfAFd6NIipGH0JCZpVT4tT7lMMIDLHQJmE3myCHHjDFiD2pbVNnlpxftwP6aShfiuonfS1ic=[/tex].由图形的对称性,面积为[tex=28.643x3.143]ZQkXjVuc0PeMSvEwOsR894e4CH2j5oS3fa3MQG4CvEGNjrbd5+0XIyb8YTm5uz7/9qqihwffOAo4kjA5IGgW1Mr2Gqb4iSfP1P2GBNpdqTqwvPUv/ZjfGMhDttGs9p22Cy4U3mOAxctfJ/qd/tx3ojkBWxTIrV1Cw4n0+876ngFBfVzMglaNxPG5aHWiouoUnRiCQEz0ZM/SpIM0lbNFdH/q2XsEjdWkqGG2B0EaTsaqwcpSLV8yOj0VEYbVtbFm[/tex]令[tex=7.929x2.357]q37g5rUAQ4IV2eO4YKXe19637ShQ01jcBy93cnkuxkMlk17Z1fwiZzNasPXVK7Vb[/tex],解得[tex=3.071x2.857]61cCEswmdV+JaXouyxeNIMWBay+62DNi6supKU9b+tM=[/tex],所以所求曲线为[tex=6.429x2.857]/gSMJXhQ+oKev3nl38ztYQOBrT0UknSHbHQ3tVihRgID53rXXkkx94sMTijVHW4C[/tex].

    内容

    • 0

      求由x轴、曲线[tex=4.071x1.429]hl4JpLynrxmqrmVdtohNfg==[/tex]及曲线[tex=4.071x1.429]hl4JpLynrxmqrmVdtohNfg==[/tex]过原点的切线所围成图形的面积, 并求该图形分别绕x轴与y轴旋转所得旋转体的体积.

    • 1

      求下列各曲线在指定点处的曲率:[br][/br] [tex=3.071x1.214]3a+ORU8JE8G96TjmUUlscw==[/tex], 在点[tex=2.071x1.357]z/lVCV5p/Eb8PwFd8UxC5g==[/tex]

    • 2

      求下列各曲线所围成图形的面积:[tex=2.786x1.429]xHlWrWjAy71OhHxbfani8A==[/tex],[tex=2.786x1.429]8YMhOE+qAi1kLhB+iLsjkg==[/tex].[img=304x284]178a7aa214bac85.png[/img]

    • 3

      求由曲线[tex=2.714x1.357]tYKDuwYJCljyjASxhvmvNg==[/tex]与过点(-1,e)的切线及x轴所围图形的面积。

    • 4

      利用二重积分求下列平面区域的面积:D由曲线[tex=5.357x1.357]2NfaP9ROOJ6D5nymLnK1v+3fCO7nkzkXSWZaetG9bmQ=[/tex]及x=1围成