• 2022-07-27
    证明如果[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]是整数并且[tex=1.071x1.0]10CFjhXoBnEL0AdeGtum/Q==[/tex]和[tex=2.286x1.143]WT473J6iJyFLml9AmYU4qg==[/tex]均为偶数,则[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]也是偶数。
  • 解:为了完成证明,我们需要证[tex=1.071x1.0]10CFjhXoBnEL0AdeGtum/Q==[/tex]是奇数或者[tex=1.857x1.143]hr3IZX7s0NXFrisbRoS0WQ==[/tex]是奇数。考虑两种情形: (i)[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]是偶数;(ii)[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]是奇数。在(i)中存在整数[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]使得[tex=2.429x1.214]r74ruB8dnWwsxD2CW0KItQ==[/tex],因此[tex=13.571x1.357]y5a+AvGfk2qryxvJGUm6GcjKM6JdHay8YMkzh/J/dYk=[/tex]是奇数。在(i)中存在整数[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]使得[tex=3.714x1.214]aqBJHeYIfw9E8wM/tEZ0gA==[/tex],因此[tex=24.857x1.357]wOVtmrmcqirbPu3A4vLc92fF675mfj4Q9VOUnasHnmQpXcCiAnqCU1jh2eQ08WyZ[/tex]是奇数。从而完成了反证法证明。

    举一反三

    内容

    • 0

      以下列出的是否是整数的有序对的集合[tex=2.643x1.143]R0ZR4gO+cfdqyH+2Y4SM7OCs+2cphtwkswvrVIz2+xw=[/tex]上的划分?[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]都是奇数的有序对[tex=2.286x1.357]31CzVDPWEEnJrSJJlGK6fQ==[/tex]的集合; [tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]只有一个是奇数的有序对[tex=2.286x1.357]31CzVDPWEEnJrSJJlGK6fQ==[/tex]的集合; [tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]都是偶数的有序对[tex=2.286x1.357]31CzVDPWEEnJrSJJlGK6fQ==[/tex]的集合。

    • 1

      证明存在无理数[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]使得[tex=1.0x1.0]F9DMbeNbVCsd1ppPNI9KUw==[/tex]是有理数。

    • 2

      某消费者效用函数为[tex=8.357x1.286]D0aApBGqyWMLWhmFhcvkipZmMsB6EvYz6UF8Kgff9XI=[/tex],如果商品[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]的价格与商品[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]的价格相等,该消费者会选择购买等量的[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]。

    • 3

      已知自变量[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和因变量[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]的值如下表所示,(1)试判断[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]与[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]之间的关系是否线性函数关系并说明理由;(2)写出[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]作为[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]函数的表达式 .[img=583x84]177416b71d41b65.png[/img]

    • 4

      证明;仅当[tex=2.5x1.214]9DGmnxh35IfB4i3nd+vacA==[/tex]时, [tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex] 对 [tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex] 的线性回归的斜率估计量等于[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]对 [tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex] 的线性回归的斜率估计量的倒数。