有关机器学习分类算法的Precision和Recall,以下定义中正确的是(假定tp = true positive, tn = true negative, fp = false positive, fn = false negative)( )
A: Precision = tp / (tn + fn), Recall = tp /(tp + fp)
B: Precision= tp / (tp + fp), Recall = tp / (tp + fn)
C: Precision = tp / (tn + fp), Recall = tp /(tp + fn)
D: Precision = tp / (tp + fp), Recall = tp /(tn + fn)
A: Precision = tp / (tn + fn), Recall = tp /(tp + fp)
B: Precision= tp / (tp + fp), Recall = tp / (tp + fn)
C: Precision = tp / (tn + fp), Recall = tp /(tp + fn)
D: Precision = tp / (tp + fp), Recall = tp /(tn + fn)
举一反三
- 关于召回率(recall),以下哪个公式是正确的? A: Recall=TP/(TN+FN) B: Recall=TP/(TP+FP) C: Recall=TP/(TP+FN) D: Recall=TN/(TP+FN)
- 若TP为真阳性,FN为假阴性,TN为真阴性,FP为假阳性,阳性预测值计算公式是() A: TN/(TN+FN)×100% B: TP/(TP+FN)×100% C: TN/(TN+FP)×100% D: TP/(TP+FP)×100% E: (TP+FN)/(TP+FP+TN+FN)×100%
- 若TP为真阳性,FN为假阴性,TN为真阴性,FP为假阳性,阴性预测值计算公式是() A: TP/(TP+FN)×100% B: TN/(TN+FP)×100% C: (TP+FN)/(TP+FP+TN+FN)×100% D: TP/(TP+FP)×100% E: TN/(TN+FN)×100%
- 中国大学MOOC: 混淆矩阵中的TP=16,FP=12,FN=8,TN=4,准确率是
- 中国大学MOOC: 混淆矩阵中的TP=16,FP=12,FN=8,TN=4,F1-score是