下列向量中,与曲线$\left\{ \begin{array}{11}{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2y=4, \\ x+y+z=0 \\\end{array} \right.$在点$(1,1,-2)$处的切向量平行的是
A: $(2,-3,-1)$
B: $(2,-3,1)$
C: $(-2,-3,1)$
D: $(2,3,1)$
A: $(2,-3,-1)$
B: $(2,-3,1)$
C: $(-2,-3,1)$
D: $(2,3,1)$
举一反三
- 以点\( (2, - 1,2) \) 为球心,3为半径的球面方程为( ) A: \( {\left( {x + 2} \right)^2} + {(y - 1)^2} + {(z + 2)^2} = 9 \) B: \( {\left( {x + 2} \right)^2} + {(y - 1)^2} + {(z + 2)^2} = 3 \) C: \( {\left( {x - 2} \right)^2} + {(y + 1)^2} + {(z - 2)^2} = 9 \) D: \( {\left( {x - 2} \right)^2} + {(y + 1)^2} + {(z - 2)^2} = 3 \)
- 曲线\( \left\{ {\matrix{ { { x^2} + {y^2} = {z^2}} \cr { { z^2} = y} \cr } } \right. \)在坐标面\( yoz \) 上的投影曲线方程为( ) A: \( \left\{ {\matrix{ { { x^2} + { { \left( {y - {1 \over 2}} \right)}^2} = {1 \over 4}} \cr {z = 0} \cr } } \right. \) B: \( \left\{ {\matrix{ { { z^2} = y} \cr {x = 0} \cr } } \right. \) C: \( \left\{ {\matrix{ {z = {y^2}} \cr {x = 0} \cr } } \right. \) D: \( \left\{ {\matrix{ { { y^2} + { { \left( {x - {1 \over 2}} \right)}^2} = {1 \over 4}} \cr {z = 0} \cr } } \right. \)
- 已知x=1,y=2,z=3,执行下列语句if(x>y) z=x;x=y;y=z;则x,y,z的值分别是 A: x=1,y=2,z=3 B: x=2,y=3,z=1 C: x=2,y=2,z=1 D: x=2,y=3,z=3
- 已知int x=1,y=2,z=3;执行if(x>y) z=x;x=y;y=z;后x,y,z的值为( ) A: x=1,y=2,z=3 B: x=2,y=3,z=3 C: x=2,y=3,z=1 D: x=2,y=3,z=2
- 已知int x=1,y=2,z=3;以下语句执行后x,y,z的值是( ). if(x>y) z=x; x=y; y=z; A: x=1, y=2, z=3 B: x=2, y=3, z=3 C: x=2, y=3, z=1 D: x=2, y=3, z=2