怎样建立向量 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]与有序数组 [tex=3.571x1.071]dgCUSb0SPkAQPWwjMWSnkCreUc8MHX+9CMPOwl+KYM8=[/tex] 之间的一一对应关系? 数[tex=3.571x1.071]dgCUSb0SPkAQPWwjMWSnkCreUc8MHX+9CMPOwl+KYM8=[/tex]的几何意义是 什么?
举一反三
- 已知两个正数 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 之和为 8 ,若要使两数 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 的立方和最小,则 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 各应等于多少?
- 已知向量 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 与向量 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴垂直.其中 [tex=8.357x1.357]T+BftPJon/Au4+ytgItUOarv6miDh3HAVIRylOqDcGo=[/tex],求向量 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex].
- 效用函数[tex=12.357x1.357]FoPNSCeAIS4ycmrTEziJOhxc84+eus5vX3ceSzs+s3l9frfKaAN7jtRg5EBPG4hY[/tex]对应无差异曲线在坐标点(8, 9)上的边际替代率为[tex=2.286x1.357]ChtHUuAbsdlQi56f+1Kr+g==[/tex].
- 以向量 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 与[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]为边作平行四边形,试用[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]与 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]表示 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]边上的高向量.
- 以向量 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 为边作平行四边形,试用 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 与 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 表示 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 边上的高向量.