“若函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[a,b]上可积,则一定存在一点[tex=3.286x1.357]EV4pc+LBkNBOhd4NZUA5NQ==[/tex]使得[tex=4.714x2.857]YQy8o6xXV2vuInKBm3FsSj2EF6+os4WDNyteAP+q0S0=[/tex]=[tex=4.286x1.357]q89YL1ee6PS8FzeegIyg/w==[/tex].”这个命题对不对?
举一反三
- 设抛物线[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]与x轴有两个交点x=a,x=b(a<b).函数f在[a,b]上二阶可导,f(a)=f(b)=0,并且曲线y=f(x)与[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]在(a,b)内有一个交点.证明:存在[tex=3.286x1.357]EV4pc+LBkNBOhd4NZUA5NQ==[/tex],使得[tex=4.357x1.429]/FYTUVhgTPYa3RqQR+bSSXpHSralD3pTYi2H35Z8qsw=[/tex].
- “[ 2*x+2 for x in range(5) ]”生成的列表是( )。 A: [2, 4, 6, 8, 10] B: [0, 2, 4, 6, 8] C: [1, 2, 3, 4, 5] D: [0, 1, 2, 3, 4]
- 设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上连续,在[tex=2.214x1.357]mpyYBdP7k8056w1o+qOOxw==[/tex]内可导,且[tex=2.857x1.071]1GIuOTeVWCaxYOtDNPK2Tw==[/tex],证明:存在[tex=3.286x1.357]EV4pc+LBkNBOhd4NZUA5NQ==[/tex],使得[tex=16.286x2.786]jyQ23P6uTtm4obItveVbez5O+mx1c67/+5/byH3o0iCFo5xckzlPpltA0c+p+kPIxdJrBAlIVa1IL6DW9wh6yphZezcV5hEMxr+1xFTAmucYG3ZQa4NovK4MTGz+fVtwI1jv/fs+BUguSajpuqjoHpYA5uwwMF/iBd8kXHUPEuA=[/tex]
- 判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]
- 若有a = [2*x for x in range(4)],语句print(a)输出为 A: [2, 4, 8,16] B: [2, 4, 6, 8] C: [1, 2, 4, 8] D: [0, 2, 4, 6]