在[tex=1.929x1.929]5tYFD3FfWZ7ry90wyYisxw==[/tex]中[tex=3.214x1.357]oD9pz9FtzuXYwWbC4jggTQ==[/tex],求微分变换[tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex]的特征多项式,并证明,[tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex]在任何一组基下的矩阵都不可能是对角矩阵.
举一反三
- 在[tex=5.429x1.357]RlDYBDYzlnKEOzd1Ql3pzQ==[/tex]中 求微分变换 [tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]的特征多项式.并证 明[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]在任何一组基下的矩阵都不可能是对角矩阵.
- 证明:如果[tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex]是主对角元两两不等的对角矩阵,那么与[tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex]可交换的矩阵一定是对角矩阵.
- 设 [tex=0.857x1.0]JGak6BG8IqnzqFUlidM8wQ==[/tex] 在基 [tex=4.929x1.357]vXf4SvBxl3nLLEknFH0tp0Ht//l1ME2qffvgRwgaIDmuRYeHk0WDwPoBDKHQvWgtjtXNA7gvJDBCLodaUkuQTA==[/tex]下的矩阵 [tex=8.286x3.5]3BT1BgBZQ5uJXxD5dg+w2/ZzvAjU/pVa/PBSz4mFwQvFD+Eb8NxQMqXfzfb5l63uazaoiZw/ta2lX1j4Pw1ZOZ9HNMOYXUB503nJiEWPNcUK6vvcWTztITz94z0Lrck9[/tex] 求 [tex=0.857x1.0]JGak6BG8IqnzqFUlidM8wQ==[/tex]在下列基下的矩阵:(1)[tex=4.929x1.357]vXf4SvBxl3nLLEknFH0tp2/ED10kqB/vcRFsRJL/sx+R83koe0cA4jQdU1UO4gkIQhOyWA2SY9SOtA9KaOWMuA==[/tex](2)[tex=12.429x1.357]vXf4SvBxl3nLLEknFH0tp32d2EG7ziU4M8sR7WrQ7N6edj21xi7ihFmcusuQMSC822MpjC0M8a3LycI0YjiyzIkp83TPhnrgbg+f01DCT9xTUK2auExiAnCUzPh2iLJQ9djmZ1UWQhWnLd87F8LQOg==[/tex]
- 设 [tex=0.857x1.0]JGak6BG8IqnzqFUlidM8wQ==[/tex] 在基 [tex=4.929x1.357]vXf4SvBxl3nLLEknFH0tp0Ht//l1ME2qffvgRwgaIDmuRYeHk0WDwPoBDKHQvWgtjtXNA7gvJDBCLodaUkuQTA==[/tex]下的矩阵 [tex=8.286x3.5]3BT1BgBZQ5uJXxD5dg+w2/ZzvAjU/pVa/PBSz4mFwQvFD+Eb8NxQMqXfzfb5l63uazaoiZw/ta2lX1j4Pw1ZOZ9HNMOYXUB503nJiEWPNcUK6vvcWTztITz94z0Lrck9[/tex] 求 [tex=0.857x1.0]JGak6BG8IqnzqFUlidM8wQ==[/tex]在下列基下的矩阵:(1)[tex=4.929x1.357]vXf4SvBxl3nLLEknFH0tp2/ED10kqB/vcRFsRJL/sx+R83koe0cA4jQdU1UO4gkIQhOyWA2SY9SOtA9KaOWMuA==[/tex](2)[tex=12.429x1.357]vXf4SvBxl3nLLEknFH0tp32d2EG7ziU4M8sR7WrQ7N6edj21xi7ihFmcusuQMSC822MpjC0M8a3LycI0YjiyzIkp83TPhnrgbg+f01DCT9xTUK2auExiAnCUzPh2iLJQ9djmZ1UWQhWnLd87F8LQOg==[/tex]
- 设 [tex=0.857x1.0]JGak6BG8IqnzqFUlidM8wQ==[/tex] 在基 [tex=4.929x1.357]vXf4SvBxl3nLLEknFH0tp0Ht//l1ME2qffvgRwgaIDmuRYeHk0WDwPoBDKHQvWgtjtXNA7gvJDBCLodaUkuQTA==[/tex]下的矩阵 [tex=8.286x3.5]3BT1BgBZQ5uJXxD5dg+w2/ZzvAjU/pVa/PBSz4mFwQvFD+Eb8NxQMqXfzfb5l63uazaoiZw/ta2lX1j4Pw1ZOZ9HNMOYXUB503nJiEWPNcUK6vvcWTztITz94z0Lrck9[/tex] 求 [tex=0.857x1.0]JGak6BG8IqnzqFUlidM8wQ==[/tex]在下列基下的矩阵:(1)[tex=4.929x1.357]vXf4SvBxl3nLLEknFH0tp2/ED10kqB/vcRFsRJL/sx+R83koe0cA4jQdU1UO4gkIQhOyWA2SY9SOtA9KaOWMuA==[/tex](2)[tex=12.429x1.357]vXf4SvBxl3nLLEknFH0tp32d2EG7ziU4M8sR7WrQ7N6edj21xi7ihFmcusuQMSC822MpjC0M8a3LycI0YjiyzIkp83TPhnrgbg+f01DCT9xTUK2auExiAnCUzPh2iLJQ9djmZ1UWQhWnLd87F8LQOg==[/tex]