A: N1 、N1+N2+1、N2
B: N2 、N1+N2+1、N1
C: N2 、N1+N2-1、N1
D: N1 、N1+N2-1、N2
举一反三
- 设n=n1n2,(n1,n2)=1,n1≥1,n2≥1,则φ(n)=φ(n1)φ(n2).若n=n1n2,n1≥1,n2≥1,则φ(n)=φ(n1)φ(n2)?
- 已知()y()=()ln()x(),则()y()(()n())()=()。A.()(()−()1())()n()n()!()x()−()n()"()role="presentation">()(()−()1())()n()n()!()x()−()n();()B.()(()−()1())()n()(()n()−()1())()!()x()−()2()n()"()role="presentation">()(()−()1())()n()(()n()−()1())()!()x()−()2()n();()C.()(()−()1())()n()−()1()(()n()−()1())()!()x()n()"()role="presentation">()(()−()1())()n()−()1()(()n()−()1())()!()x()-n();()D.()(()−()1())()n()−()1()n()!()x()−()n()+()1()"()role="presentation">()(()−()1())()n()−()1()n()!()x()−()n()+()1().
- 已知一个序列x(n)的z变换X(z)定义成[img=140x46]17e0bb90d234a43.jpg[/img]已知某数字系统的[img=191x22]17e0bb91a52fc70.jpg[/img],则单位脉冲响应h(n)= A: h(n)={1, 2, 0, 2, 1} , 0≤n≤4 B: h(n)={1, 2, 2, 1} , 0≤n≤3 C: h(n)={1, 2, 0, 2, 1} , 1≤n≤4 D: h(n)={1, 2, 2, 1} , 1≤n≤4
- 已知一个序列x(n)的z变换X(z)定义成[img=140x46]17e4422545608da.jpg[/img]已知某数字系统的[img=191x22]17e442257956284.jpg[/img],则单位脉冲响应h(n)= A: h(n)={1, 2, 0, 2, 1} , 0≤n≤4 B: h(n)={1, 2, 2, 1} , 0≤n≤3 C: h(n)={1, 2, 0, 2, 1} , 1≤n≤4 D: h(n)={1, 2, 2, 1} , 1≤n≤4
- 设随机变量 X~t(n)(n>1),Y =X1/2,则( ) A: Y~χ2(b) B: Y~χ2(n-1) C: Y~F(n,1) D: Y~F(1,n)
内容
- 0
设序列 x(n)= {1 , 3 , 2 , 1 ; n=0,1,2,3 } ,另一序列 h (n) = {1 , 2 , 1 , 2 ; n=0,1,2,3} , ( 1 )求两序列的线性卷积 y L (n) ; ( 4 分) ( 2 )求两序列的 6 点循环卷积 y C (n) 。 ( 4 分) ( 3 )说明循环卷积能代替线性卷积的条件。( 2 分)
- 1
设`\n`阶方阵`\A`满足`\|A| = 2`,则`\|A^TA| = ,|A^{ - 1}| = ,| A^ ** | = ,| (A^ ** )^ ** | = ,|(A^ ** )^{ - 1} + A| = ,| A^{ - 1}(A^ ** + A^{ - 1})A| = `分别等于( ) A: \[4,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] B: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n + 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] C: \[4,\frac{1}{2},{2^{n + 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\] D: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\]
- 2
两个有限长序列x1(n)和x2(n),长度分别为N1和N2,若x1(n)与x2(n)线性卷积后的结果序列为x(n),则x(n)的长度为:() A: N=N1+N2-1 B: N=max(N1,N2) C: N=N1 D: N=N2
- 3
设x[n]=δ[n]+2δ[n-1]-δ[n-3]和h[n]=2δ[n+1]+2δ[n-1],y[n]=x[n]*h[n],求y[0]=
- 4
设X~N(1, 2), Y~N(-1, 3),且X与Y相互独立,则2X-Y~( ) A: N(3, 8) B: N(3, 5) C: N(3, 11) D: N(3,25)