设\(n\)阶矩阵\(A\)的伴随矩阵为\({A^ * }\),若\(\left| A \right| = 0\),则\(\left| { { A^ * }} \right| \ne 0\).
举一反三
- 设\( A \)为\( n \) 阶方阵, \( B \)是\( A \)经过若干次初等变换后得到的矩阵,则( ) A: \( \left| A \right| = \left| B \right| \) B: \( \left| A \right| \ne \left| B \right| \) C: 若\( \left| A \right| = 0 \) ,则必有 \( \left| B \right| = 0 \) D: 若\( \left| A \right| > 0 \),则一定有\( \left| B \right| > 0 \)
- 设`\A`是`\m \times n`矩阵,`\m` 小于 `\n`,则必有 ( ) A: \[\left| {{A^T}A} \right| \ne 0\] B: \[\left| {{A^T}A} \right| = 0\] C: \[\left| {A{A^T}} \right| > 0\] D: \[\left| {A{A^T}} \right| < 0\]
- 设`\n`阶方阵`\A`经过初等变换后得方阵`\B`,则 ( ) A: \[\left| {\rm{A}} \right| = \left| {\rm{B}} \right|\] B: \[\left| A \right| \ne \left| B \right|\] C: \[\left| A \right|\left| B \right| \ge {\rm{0}}\] D: 若`\| A| = 0`,则`\| B| = 0`
- 设 \( A \)为 \( n \)阶方阵,且\( \left| A \right| = a \ne 0 \) ,则 \( \left| { { A^ * }} \right| = \)( ) A: \( a \) B: \( {1 \over a} \) C: \( {a^{n - 1}} \) D: \( {a^n} \)
- 设 \( A \), \( B \)为 \( n \)阶方阵,已知\( A \ne B \) ,则 \( \left| A \right| \ne \left| B \right| \).