The integral of (1/x)dx is
A: ln|x|+C
B: ln(x)
C: ln(-x)
D: ln(-x)+C
A: ln|x|+C
B: ln(x)
C: ln(-x)
D: ln(-x)+C
举一反三
- The integral of [img=57x51]17de92efd1460f8.png[/img] is A: ln|x|+C B: ln(x) C: ln(-x) D: ln(-x)+C
- 求函数$y=x\ln x-x$的微分 A: $(\frac{1}{x}-1)dx$ B: $(\ln x-1)dx$ C: $\ln x$ D: $\ln x dx$
- 函数\(y = \ln \ln x\)的导数为( ). A: \({1 \over {x\ln x}}\) B: \( - {1 \over {x\ln x}}\) C: \({1 \over {\ln x}}\) D: \( - {1 \over {\ln x}}\)
- 1. $\int \frac{1}{x(1+x)} dx =$ A: \[\ln{(x)}-\ln{\left( x+1\right) }+C\] B: \[\ln{(x)}+\ln{\left( x+1\right) }+C\] C: \[x-\ln{\left( x+1\right) }+C\] D: \[-\ln{(x)}+\ln{\left( x+1\right) }+C\]
- \( \int {\cos \ln xdx} = \)( ) A: \( {x \over 2}(\cos \ln x + \sin \ln x) + C \) B: \( {x \over 2}(\cos \ln x - \sin \ln x) + C \) C: \(- {x \over 2}(\cos \ln x + \sin \ln x) + C \) D: \(- {x \over 2}(\cos \ln x - \sin \ln x) + C \)