• 2021-04-14
    用以下公式求 f(x) 的值。当通项的绝对值小于 10^-7 时停止计算, x 的值由键盘输入。 f(x)=a 1 x^1-a 2 x^2+a 3 x^3-...+(-1) ^(n+1)*a n x^n+...,|X|<1 其中 a 1 =1 , a 2 =2 , a n =1/(a n-2 +a n-1 ) ,n=1,2,3,4,5,... Option Explicit Private Sub Commandl_Click() Dim x As Single , fx As Single Dim a As Single,a1 As Single,a2 As Single Dim t As Single a1=l : a2=2 x=text1 If ___________ Then MsgBox("x 必须在 -1---1 之间 ") ExitSub End If fx=a 1 *x-a 2 *x*x t=(-1)*x*x Do a=1/(a l +a 2 ) t=(-1)*x*x fx= __________ a l =a 2 Loop Until Abs(a*t)<0.0000001 Text2=fx End Sub
  • 第一空: abs(x)>=1 第二空: fx+a*t 第三空: a 2 =a

    举一反三

    内容

    • 0

      将\(f(x) = {1 \over {2 - x}}\)展开成\(x \)的幂级数为( )。 A: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(( - 2,2)\) B: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(\left( { - 2,2} \right]\) C: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(( - 2,2)\) D: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(\left( { - 2,2} \right]\)

    • 1

      【单选题】对任意实数x 1 , y 1 , x 2 , y 2 , x 1 < x 2 , y 1 < y 2 , 分布函数P{x 1 <X≤x 2 , y 1 <Y≤y 2 }=? A. F(x 2 , y 2 )+ F(x 1 , y 1 )+ F(x 1 , y 2 )+ F(x 2 , y 1 ) B. F(x 2 , y 2 )- F(x 1 , y 1 )+ F(x 1 , y 2 )- F(x 2 , y 1 ) C. F(x 2 , y 2 )+ F(x 1 , y 1 )- F(x 1 , y 2 )- F(x 2 , y 1 ) D. F(x 2 , y 2 )- F(x 1 , y 1 )- F(x 1 , y 2 )+ F(x 2 , y 1 )

    • 2

      设函数f(x)=x2,0≤x≤1,而S(x)=,-∞≤x<+∞。其中,(n=1,2,…),则S(-1/2)等于()。 A: -1/2 B: -1/4 C: 1/4 D: 1/2

    • 3

      将\(f(x) = {1 \over {1 + {x^2}}}\)展开成\(x\)的幂级数为( )。 A: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} &amp; {} \cr } ( - \infty &lt; x &lt; + \infty )\) B: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} &amp; {} \cr } ( - 1&lt; x &lt; 1)\) C: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} &amp; {} \cr } ( - 1 &lt; x &lt; 1)\) D: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { x^{2n}}} \matrix{ {} &amp; {} \cr } ( - 1 &lt; x &lt; 1)\)

    • 4

      \( \sin x \)的麦克劳林公式为( ). A: \( \sin x = x - { { {x^3}} \over {3!}} + { { {x^5}} \over {5!}} - \cdots + {( - 1)^n} { { {x^{2n + 1}}} \over {\left( {2n + 1} \right)!}} + o\left( { { x^{2n + 2}}} \right) \) B: \( \sin x = 1 - { { {x^2}} \over {2!}} + { { {x^4}} \over {4!}} - { { {x^6}} \over {6!}} + \cdots + {( - 1)^n} { { {x^{2n}}} \over {\left( {2n} \right)!}} + o\left( { { x^{2n + 1}}} \right) \) C: \( \sin x = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)