A: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fsolve(f,[1,1,1],optimset('Display','off'))
B: x=fsolve(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1])
C: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fzero(f,[1,1,1])
D: x=fzero(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1])
举一反三
- 青书学堂: 二次型 f( x 1 , x 2 , x 3 )=2 x 1 2 +5 x 2 2 +5 x 3 2 +4 x 1 x 2 −8 x 2 x 3 ,则 f的矩阵为 。
- 设A={x|-1<x<2},B={x|1<x<3},求A∪B. A: {x|-1<x<2} B: {x|-1<x<1} C: {x|-1<x<3} D: {x|2<x<3}
- 青书学堂: 设线性方程组 { 3 x 1 + x 2 =1, 3 x 1 +3 x 2 +3 x 3 =0 ,5 x 1 22123 x 2 22122 x 3 =1 }则此方程组 。
- 求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$
- 积分[img=136x52]1803d6afd4e6f95.png[/img]的计算程序和结果是 A: clearsyms xy=1/x^2/sqrt(x^2-1)int(y,x,-2,-1)3^(1/2)/2 B: clearsyms xint(1/x^2/sqrt(x^2-1),x,-2,-1)3^(1/2)/2 C: clearsyms xint(1/x/sqrt(x^2-1),x,-2,-1)-pi/3 D: clearsyms xint(1/x/sqrt(x^2-1),x,-2,-1)3^(1/2)/2 E: clearsyms xint(1/x^2*sqrt(x^2-1),x,-2,-1)log(3^(1/2) + 2) - 3^(1/2)/2
内容
- 0
A={x▏0<x≦2},B={x▏1<x≦3},则A∩B和A∪B分别是( ) A: {x▏1<x≦3}和{x▏0<x≦3} B: {x▏1<x<2}和{x▏2<x≦3} C: {x▏1<x≦2}和{x▏0<x≦3} D: {x▏1<x≦2}:和{x▏0<x<3}
- 1
【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
- 2
集合A={x|x< -1},集合B={x|-2≤x<3},A∩B=( ) A: {x|-1<x<3} B: {x|x<3} C: {x|-2≤x<-1} D: {x|x<-1}
- 3
有定义语句:int a=1,b=2,c=3,x;,则以下选项中各程序段执行后,x的值不等于3的是 。 A: if(c<3)x=1; else if(b<2)x=2; else x=3; B: if(a<2)x=3; else if(a<1)x=2; else x=1; C: if(a<3)x=3; if(a<2)x=2; if(a<1)x=1; D: if(a<2)x=b; if(b<3)x=c; if(c<1)x=a;
- 4
下述断言正确的是( )。 A: $x-1$是$(x^{2}-1)^{3}(x^{3}-1)$的$3$重因式; B: $x^{2}-1$是$(x^{2}-1)(x^{3}-1)$的单因式; C: $(x-1)^{2}$是$(x^{2}-1)^{2}(x^{3}-1)^{2}$的$2$重因式; D: $x-1$是$(x^{2}-1)^{2}(x^{3}-1)^{2}$的$4$重因式。