• 2022-07-02
    证秩为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的矩阵可表示为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个秩为 1 的矩阵之和.
  • 证明: 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为秩为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵,则它必与矩阵[tex=6.5x2.857]NeoTBlf1CmkUoMf07Si5dHMigdfUPQjNNGI0lPRzvlEF0fTs1mMjngRyfO3h0E1JVv/rHQFXY+P6zaukKwHntGe0cVomhQVf8gz4uwBipFo=[/tex]等价,所以必存在两个可逆矩阵[tex=1.0x1.0]qe38JsX3RFIP9TdO4w/++Q==[/tex],[tex=0.857x1.214]yf2WhC6dow23mEHpBHcQLQ==[/tex]使得[tex=9.786x2.857]49hNLt7rZbkre1+Y0DV4ZdtpVnRkKn6WcJiqJHqXpAmzO0Zy87JW7CnPemE+wsOyz0SZP30mwx6JlVVaBJZVjv4/iItdST2qf9zZMk6uMKE4OIEPsaMWUTrWC9Mv71X2[/tex]成立.而[tex=6.929x2.857]jcCMHflCR8OS9TosV6N5vFA4o5KwCvcZw7OQuwp/Z3bYaK05rhwwntLlZUhWF7XYKriyG6eRtvH8X8o31JyGMZ/Y67FbhXtnUV99LFFS/Nk=[/tex],可以写成[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个只有一个元素为 1其余为零的[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵的和的形式,即[tex=7.857x2.857]jcCMHflCR8OS9TosV6N5vHdH1fyRVD21RJS9z2xcey7eUrgcVZ1H90bN/F+DDLoesI6PvWBhQZSbAcGnqc9K6SUhaCkdVZmPd3wcfR02W9E=[/tex][tex=16.857x8.643]utNnAScIEmjrSuy0CkL8t0m61uRQbPY9wTbT4290IySqkS22/V4J3N2M8bFXiqwcHnGcA1oOd+aD2K0r8N809AWjEj5q65aMwegjEDVPsgSU1eYx7/6B7oR3OJW+nYB02youn5SFGruSHQMKEyaherKS9Tbc32yz3IWDkesFQ7I5GV5jaUP40zJYKz8tnnJDAulSHMi3G4Han/XFqfrSjQ==[/tex][tex=20.0x8.643]nMZptqmiAAdbIdSYDcZAOCAOlNZx3b4tSzOYtnZ2ao5tE22jqHFtPyyzNhrv5hrpf02YNxW/cZQJW4UgrGFW3ISeQ16RagbkWUrMVnucxWHvOqQ9CUSqhy5StNQypVvp7CLiptzli5PKwL1SrvNmez+Y6XzFb8PHqIOA1pn3VwMKXbb0KyQeqt7AHsW/9FG+JEJaIKNYNgYc2fA7PIaLaA==[/tex][tex=15.857x8.643]oe11HVlBpgnqVUEEYpbT7m/fES4Yc7AiVEsqGPkr5rd8CftJgMSF9Ail7ZB79fB3EV1APtppYL2y1QzyGPJusXx8AKs7aHUnLetbr80rW5XcvxQc5ISPgAKzB5esLEGvYzoBtCjOoAQA9vGK5rUzkkQGJFn0D1ibwOqQjpNJfGFABUYX3VtpVSdL4t/oxzGufIi64WjxGdtAIe1fO1R4CQ==[/tex][tex=16.786x8.643]nMZptqmiAAdbIdSYDcZAOGsSJ1S0T7aNbC1955kABdILpVJ5+IvOgwLIsgh0twOEqvh+ylPENAN1XqQ2Z3IIMblw5O3qC/fNm2cvhvr0Hribb6/DfRgCDGJvWrS0DLV89Sf6UsRsEBqdq37btYenjNm517WU02pKw1yzp3QdItNnyp6wHzoCWxhCPKcLYzIN670276KsCDjeCvKL5p403g==[/tex]所以有[tex=10.214x2.857]8jUyEDf5+NYwC4U3X8GvWdDk5odf0fpbA8CTAa7QfxEJndwx/64gjokD5udjGETWf8DsyknG7o44YJkQ+NWlJbu9WV+grDWRPomuGoKzYpi9MT+p9ey6Gi32pGSr4zTO[/tex][tex=21.714x8.643]lAgFXaI8mpoDVg1qL0wzCfBDCVtPdVbp6c2PV9TxlmHfQ1GlchHbF7hT8Sjx8DCGpZ85VJcZTe0lT27t8nsQiAVR4UOF/SP0w8bWpvKbs5x+wY6M7sSoSzM62iONNWKfPExjYSxiflg2bXGMS+a0iS60H5IU95bXjualcVvBh3BwtHWbXkir/O5ML9lG+NuIECRMOhJ05piFw0iK+GMRUEsNN2nM2WHDcAsI877+mqE=[/tex][tex=17.571x8.643]4fPCQ65Pe4m3t168mKfKuMJHw3+M8XytE3mxYhLmhiEmy7y0Xj9Og97DFV8wwP8bKWMnYN/iuhfSu/sSr4HE1AtagrEulb4kXNWXzbToE3hj+X8i+MQUrDnc5VNaYft8vA/KRTmsF7IaPJlFcypPklyJ4SfEHbFYonqYGX2QYf5UpqptGJE+snXgskL8qIIb33EunztnCVJDkwg5r2YQhDrr0dkQC5uSB0+gfmcZ818=[/tex][tex=22.214x8.643]9Waobi7ZTzJmqfzMh1N1SLfQ4ylpw+QtIhJWnPG5U20kbyDfvEbKKQnWeUzRjxeAbtzkjGK/QYRT3BvIYj9kTZopjkdPYGPf9MPoErVj2Gl6q+ZUVXM2qiSGdsaE+39rcKMPGUM4MLN8e0IAe4qpFembmC/yJWeObKZOjwzKj2qq9qysTunOJXEmc9fC3sCDAj8gaBD8VHSFb+2HIBYeqcF6dMcxHWZgrwP49g/XvPQ=[/tex][tex=16.786x8.643]oe11HVlBpgnqVUEEYpbT7m/fES4Yc7AiVEsqGPkr5rd8CftJgMSF9Ail7ZB79fB3EV1APtppYL2y1QzyGPJusU9XOAjVi5mzsp8Rn7kB2BI4daTPMt/A+aQYLa5cPcdjUWFGpXR+WbTmivYDQ6Giz3xrK3pQ6cBe6hVEpPECKrdB34ppLsicEKGGoxuKsTDEHQi14KqZdW3I5KBPLu0PZw==[/tex]这样[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]就表示成了[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个矩阵之和的形式.而任一个[tex=18.357x9.071]jzw9TdJ9Cfnz1NcKkBAPGrJ/RXM6Z1kVtefkqNXbYkmFThfs1XiC9OmmfMF84fDM56OiDaXCNLxFSobhe8W16wp9nOw1Zy7kz82fefn/fUdO5vZe7lRBDlxxvhBhpMep5DH1C1IrPRpVKUYh3tDInTi7IPNNFeG3GEoQtVCu6Hnz6wRUAFWvipU383Fnd0VhjNeJQls4M+gjRQPbE1e8Dw==[/tex],由于中间那个矩阵只有一个元素非零,所以其秩为 1,而[tex=1.0x1.0]aUdjwnjGVc0y5pU4p+293A==[/tex], [tex=0.857x1.214]yf2WhC6dow23mEHpBHcQLQ==[/tex]可逆,所以 3 个矩阵的积的秩仍然为 1 . 这样 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]就表示成了[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个秩为 1 的矩阵之和了.

    内容

    • 0

      [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个秩为 1 的矩阵之和为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]是否成立?若成立请证明,否则举反例。

    • 1

      证明:秩等于[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]的对称矩阵可以表成[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]个秩等于 1 的对称矩阵之和。

    • 2

      证明: 实对称矩阵 [tex=0.786x1.0]Gl8myqGBf3V5xKlLwXodGw==[/tex] 是秩为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的半正定阵的充要条件是, 存在秩等于 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的 [tex=2.286x1.071]qxUBJkw5pHPFqpR4rHoDwQ==[/tex] 矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 使 [tex=3.357x1.143]rBiqGaSDVnQOpJm3gHRQdr95ppa2wBY12deY6FUqLHU=[/tex].

    • 3

      证明:秩等于[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]的对称矩阵,可以表示成[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]个秩等于1 的对称矩阵之 和.

    • 4

      在秩是[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的矩阵中。有没有等于零的[tex=1.786x1.143]d6njwgtCEIn2qI8rKMmRlw==[/tex]阶子式?有没有等于零的[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 阶子式?