设X,Y和Z都是拓扑空间,若[tex=4.571x1.286]X+mq3hHfi7zCb5+cqXVpIFW8szLUPAeVWDCjXrH7bKg=[/tex]和[tex=4.357x1.286]PKaDEaZOLlirT5q6ECAFeAqklZA4OE0fTUF+MVESwvU=[/tex]都是商映射,则[tex=6.0x1.286]eDcpMmSurNfaPO1r2Wv022lX4wLMlDxKhtr20goAdA4=[/tex]也是商映射。
举一反三
- 设X和Y是两个拓扑空间,[tex=4.786x1.286]YTQzLz+sesI1dQ5UGt8Nb7XN1gDRtIK2HjDLwQB/utY=[/tex]是一个连续映射,证明:如果Z为X的一个连通子集,则[tex=2.071x1.286]4Z9CM7uE3guEK2sbbmjgzg==[/tex]是一个连通子集。
- 设[tex=5.929x1.071]gAFI4ZzNAmjFfJAphmTsRQ==[/tex],若[tex=7.786x1.357]09fTpcwFMVcu1qrv9hyVbjaVP6Nu0Q7b0o9JCaEhfzk=[/tex],[tex=7.786x1.357]17Fg+KbtgLZdNaerla1J+g==[/tex],[tex=7.714x1.357]GzWWzGNDry0+/hdju2Gv5Q==[/tex],那么[tex=0.571x0.786]/uIIzJZ/1DPgc5sOsRpAXQ==[/tex],[tex=0.571x1.0]Tr41q2//n6lfFMLRmh8s0w==[/tex],[tex=0.5x0.786]rGd4FFr4Zsu+cuz6gxITMA==[/tex]的大小关系为 A: x<y<Z B: y<z<x C: z<x<y D: z<y<x E: 不能确定
- 设[tex=5.214x1.214]l2vYijvwphpA0Bdo8olvNhKvOVd4RCELKut0jj6S5qs=[/tex]是连续映射,Y是Hausdorff空间,证明:(1)集合[tex=9.357x1.357]QCqopxinhs+TvVYgLw48vVpO4x/Rie4gzAlmw62rJGM=[/tex]是X的闭子集;(2)如果A是X的稠密子集且[tex=3.714x1.357]fo4X83uQk0aLKgSpBjpSMw8oj58YdJ5bCiu5d4gfWQqZvgjwV7CYEcyqXJHmRmoq[/tex],则f=g。
- 用谓词逻辑推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。判断推理证明是否正确。 证明:设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数; 前提:∀x(Q(x)→R(x)),∃x(Q(x)∧Z(x)); 结论:∃x(R(x)∧Z(x))。 (1)∃x(Q(x)∧Z(x)) 前提引入 (2)Q(c)∧Z(c) (1)∃- (3)∀x(Q(x)→R(x)) 前提引入 (4)Q(c)→R(c) (3)∀- ( 5 )Q(c) (2) 化简 ( 6 )R(c) (4)(5) 假言推理 ( 7 )Z(c) (2) 化简 (8)R(c)∧ Z(c) (6)(7) 合取引入 (9)∃x(R(x)∧Z(x)) (8)∃+
- 采用基2时间抽取FFT算法流图计算8点序列的DFT,第一级的数据顺序为 A: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] B: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] C: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7] D: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7]