二次函数y=2x²+4x-4 的对称轴为
A: 0
B: 1
C: -1
D: 2
A: 0
B: 1
C: -1
D: 2
举一反三
- 下列函数为偶函数的是( )。 A: \( y = e^{2x} - {e}^{ - 2x} + \cos x \) B: \( y = {\log _2} { { 1 + x} \over {1 -x}} \) C: \( y = 3{x^4} - {x^3} \) D: \( y = { { {e^x} + {e^{ - x}}} \over 2} \)
- 函数\(y = \ln \left( {1 + {x^2}} \right)\)的导数为( ). A: \( { { 2x} \over {1 + {x^2}}}\) B: \( - { { 2x} \over {1 + {x^2}}}\) C: \( { { 2x} \over {1 - {x^2}}}\) D: \( - { { 2x} \over {1 - {x^2}}}\)
- 假设原始问题为: max z=2x 1 -x 2 +3x 3 -2x 4 s.t. x 1 +3x 2 - 2x 3 + x 4 ≤12 -2x 1 + x 2 -3x 4 ≥8 3x 1 - 4x 2 +5x 3 - x 4 = 15 x 1 ≥0, x 2 :Free, x 3 ≤0, x 4 ≥0 则对偶问题中约束条件及决策变量的符号依次为: min y=12w 1 +8w 2 +15w 3 s.t. w 1 - 2w 2 + 3w 3 ( ) 2 3w 1 + w 2 - 4w 3 ( ) -1 -2w 1 +5w 3 ≤3 w 1 - 3w 2 - w 3 ≥-2 w 1 () 0,w 2 () 0, w 3 :Free
- 函数\(y = \sin{x^2}\)的导数为( ). A: \( - 2x\sec {x^4}\) B: \(2x\cos {x^2}\) C: \(2x\sec {x^2}\) D: \(- 2x\sec {x^2}\)
- 在下列函数(1)y=2x(2)y=x2(3)y=-2x(4)y=2x2中,函数值y随x的增大而增大的是( ) A: (1),(2) B: (1),(2),(4) C: (1),(3) D: (1),(2),(3)