A: one-hot
B: word2vec
C: Bag of word
D: jieba
举一反三
- 词向量表示中,哪个方法可以表示单词位置关系所反映的语义关联? A: One-hot B: N-gram C: Co-occurrence matrix D: Word Embedding
- 词向量表示中,哪个方法可以表示某个词的意思与跟它相邻的单词紧密相关? A: One-hot B: N-gram C: Co-occurrence matrix D: Word Embedding
- 已知向量\(\vec {a},\vec {b}的夹角\theta=\frac{3\pi}{4},且|\vec{a}|=\sqrt{2},|\vec {b}|=\sqrt{3},求|\vec{a}-\vec{b}|=\)
- Have a word, have words, in a word, eat one’s word, what’s the good word, from the word go, by word of mouth中的 word 的意思都是“词“。( )
- 考察球面$S:\ {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{a}^{2}}$,若规定内侧为正向,在其上任意一点的单位正法向量为( ). A: $\frac{x\vec{i}+y\vec{j}+z\vec{k}}{a}$ B: $-\frac{x\vec{i}+y\vec{j}+z\vec{k}}{a}$ C: $x\vec{i}+y\vec{j}+z\vec{k}$ D: $-\left( x\vec{i}+y\vec{j}+z\vec{k} \right)$
内容
- 0
如果曲面$S$由参数方程给出:$x=u+v,\ y=uv,\ z=u-v$,则在任意一点的单位法向量为( ) A: $\pm \frac{(-u-v)\vec{i}+2\vec{j}+(u-v)\vec{k}}{\sqrt{2{{u}^{2}}+2{{v}^{2}}+4}}$ B: $\pm\frac{(u+v)\vec{i}+2\vec{j}+(-u-v)\vec{k}}{\sqrt{2{{u}^{2}}+2{{v}^{2}}+4}}$ C: $\pm \left[ (-u-v)\vec{i}+2\vec{j}+(u+v)\vec{k} \right]$ D: $\pm \left[ (u+v)\vec{i}+2\vec{j}+(-u-v)\vec{k} \right]$
- 1
Read the first three sentences of the text to find out one word in two different senses.[ ] A: sun B: hot C: competition
- 2
已知向量\(|\vec {a}|=13,|\vec{b}|=19,|\overrightarrow{a+b}|=24 ,则向量|\overrightarrow{a-b}|=\)
- 3
已知`\vec\alpha _1,\vec\alpha _2,\vec\beta _1,\vec\beta _2`是4维列向量,设`\| alpha _1,alpha _2,alpha _3,beta | = a,| beta + gamma ,alpha _3,alpha _2,alpha _1| = b`,则`\| 2\gamma ,alpha _1,alpha _2,alpha _3 | = ` ( ) A: \[(a - b)\] B: \[2(a - b)\] C: \[(a + b)\] D: \[2(a + b)\]
- 4
"star" 与 "sun" 两个单词的one-hot词向量的夹角余弦值是多少? A: 0 B: 1 C: -1