已知向量\(\vec {a},\vec {b}的夹角\theta=\frac{3\pi}{4},且|\vec{a}|=\sqrt{2},|\vec {b}|=\sqrt{3},求|\vec{a}-\vec{b}|=\)
举一反三
- 如果曲面$S$由参数方程给出:$x=u+v,\ y=uv,\ z=u-v$,则在任意一点的单位法向量为( ) A: $\pm \frac{(-u-v)\vec{i}+2\vec{j}+(u-v)\vec{k}}{\sqrt{2{{u}^{2}}+2{{v}^{2}}+4}}$ B: $\pm\frac{(u+v)\vec{i}+2\vec{j}+(-u-v)\vec{k}}{\sqrt{2{{u}^{2}}+2{{v}^{2}}+4}}$ C: $\pm \left[ (-u-v)\vec{i}+2\vec{j}+(u+v)\vec{k} \right]$ D: $\pm \left[ (u+v)\vec{i}+2\vec{j}+(-u-v)\vec{k} \right]$
- 使用罗德里格斯(Rodrigues)旋转公式,下面哪个等式与反向旋转轴产生的效果等价? A: \( R(-\vec{a},\theta) = R(\vec{a},\theta) \) B: \( R(-\vec{a},\theta) = R(\vec{a},\theta+\pi) \) C: \( R(-\vec{a},\theta) = -R(\vec{a},\theta) \) D: \( R(-\vec{a},\theta) = R(\vec{a},-\theta) \) E: 结果不可预测. F: 以上均不对.
- 考察球面$S:\ {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{a}^{2}}$,若规定内侧为正向,在其上任意一点的单位正法向量为( ). A: $\frac{x\vec{i}+y\vec{j}+z\vec{k}}{a}$ B: $-\frac{x\vec{i}+y\vec{j}+z\vec{k}}{a}$ C: $x\vec{i}+y\vec{j}+z\vec{k}$ D: $-\left( x\vec{i}+y\vec{j}+z\vec{k} \right)$
- 函数 $u=xy+yz+zx$ 在点 $P(1,-1,2)$ 处的梯度 $\mathrm{grad}u|_p=$ . A: $-\vec{i}-3\vec{j}$ ; B: $-\vec{i}+3\vec{j}$ ; C: $\vec{i}-3\vec{j}$ ; D: $\vec{i}+3\vec{j}$ .
- 已知向量\(|\vec {a}|=13,|\vec{b}|=19,|\overrightarrow{a+b}|=24 ,则向量|\overrightarrow{a-b}|=\)