• 2022-07-25
    设f(x,y,z)=xy^2z^3,且z=(x,y)由方程x^2+y^2+Z^2-3xyz=0确定,求αf/αx
  • 先由f(x,y,z)对x求偏导αf/αx=y^2*(z^3+x*3z^2*αz/αx)再由z(x,y)对x求偏导,即x^2+y^2+z^2-3xyz=0对x求偏导,可得2x+0+2z*αz/αx-3yz-3xy*αz/αx=0整理可得αz/αx=(2x-3yz)/(3xy-2z)∴αf/αx=y^2*(z^3+x*3z^2*αz/αx)=y^2*[z^3+x*3z^2*(2x-3yz)/(3xy-2z)]=y^2*[(3xyz^3-2z^4+6x^2z^2-9xyz^3)/(3xy-2z)]=2y^2z^2*[(3x^2-3xyz-z^2)/(3xy-2z)]

    内容

    • 0

      设方程\({sinz} - x^2yz = 0\)确定函数\(z=z(x,y)\),则\( { { \partial z} \over {\partial x}}=\) A: \( { { 2xyz} \over {\cos z - {x^2}y}}\) B: \( { { 2xyz} \over {\cos z + {x^2}y}}\) C: \( { { xyz} \over {\cos z - {x^2}y}}\) D: \( { { 2xy} \over {\cos z - {x^2}y}}\)

    • 1

      判断下列关系模式可以达到的范式级别:1)R(X,Y,Z)F={XY→Z}2)R(X,Y,Z)F={Y→Z,XZ→Y}3)R(X,Y,Z)F={Y→Z,Y→X,X→YZ}4)R(X,Y,Z)F={X→Y,X→Z}

    • 2

      已知x=1,y=2,z=3,执行下列语句if(x>y) z=x;x=y;y=z;则x,y,z的值分别是 A: x=1,y=2,z=3 B: x=2,y=3,z=1 C: x=2,y=2,z=1 D: x=2,y=3,z=3

    • 3

      4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$

    • 4

      设x=x(y,z),y=y(x,z),z=z(x,y)都是由方程F(x,y,z)=0所确定的具有连续偏导数的函数,则=(). A: 0 B: -1 C: 2 D: 1