求解方程组[img=218x63]1803072f0e0e849.png[/img]接近 (2,2) 的解 A: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] B: NSolve[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] C: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,y},{2,2}] D: FindRoots[{x^2+y^2=5Sqrt[x^2+y^2]-4x,y=x^2},{x,2},{y,2}]
求解方程组[img=218x63]1803072f0e0e849.png[/img]接近 (2,2) 的解 A: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] B: NSolve[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] C: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,y},{2,2}] D: FindRoots[{x^2+y^2=5Sqrt[x^2+y^2]-4x,y=x^2},{x,2},{y,2}]
求解方程组[img=218x63]1803072e5daced1.png[/img]接近 (2,2) 的解 A: NSolve[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] B: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] C: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,y},{2,2}] D: FindRoots[{x^2+y^2=5Sqrt[x^2+y^2]-4x,y=x^2},{x,2},{y,2}]
求解方程组[img=218x63]1803072e5daced1.png[/img]接近 (2,2) 的解 A: NSolve[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] B: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] C: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,y},{2,2}] D: FindRoots[{x^2+y^2=5Sqrt[x^2+y^2]-4x,y=x^2},{x,2},{y,2}]
在环形区域[img=136x26]18030733be53638.png[/img]上, 绘制函数图形[img=129x27]18030733c6c9cd6.png[/img] A: Plot3D[x^2+y^2,{x,-2,2},{y,-2,2},Exclusions→Function[{x,y},0.5<x^2+y^2<2]] B: Plot3D[x^2+y^2,{x,-2,2},{y,-2,2},RegionFunction→Function[{x,y},0.5<x^2+y^2<2]] C: Plot3D[x^2+y^2,{x,-2,2},{y,-2,2},RegionFunction→Function[{x,y},2>x^2+y^2>0.5]] D: Plot3D[x^2+y^2,{y,-2,2},{x,-2,2},Exclusions→Function[{x,y},0.5<x^2+y^2<2]]
在环形区域[img=136x26]18030733be53638.png[/img]上, 绘制函数图形[img=129x27]18030733c6c9cd6.png[/img] A: Plot3D[x^2+y^2,{x,-2,2},{y,-2,2},Exclusions→Function[{x,y},0.5<x^2+y^2<2]] B: Plot3D[x^2+y^2,{x,-2,2},{y,-2,2},RegionFunction→Function[{x,y},0.5<x^2+y^2<2]] C: Plot3D[x^2+y^2,{x,-2,2},{y,-2,2},RegionFunction→Function[{x,y},2>x^2+y^2>0.5]] D: Plot3D[x^2+y^2,{y,-2,2},{x,-2,2},Exclusions→Function[{x,y},0.5<x^2+y^2<2]]
计算二重积分[img=159x48]18030731271aaff.png[/img], D 是单位圆盘[img=89x26]180307312f6708b.png[/img],应使用的语句是 A: Integrate[Sqrt[x^2+y^2 ], {x^2+y^2≤1}] B: Integrate[Sqrt[x^2+y^2 ]Boole[x^2+y^2≤1],{x,-1,1},{y,-1,1}] C: NIntegrate[Sqrt[x^2+y^2 ]Boole[x^2+y^2≤1],{x,-1,1},{y,-1,1}] D: Integrate[Sqrt[x^2+y^2 ],{x^2+y^2≤1,{x,-1,1},{y,-1,1}}]
计算二重积分[img=159x48]18030731271aaff.png[/img], D 是单位圆盘[img=89x26]180307312f6708b.png[/img],应使用的语句是 A: Integrate[Sqrt[x^2+y^2 ], {x^2+y^2≤1}] B: Integrate[Sqrt[x^2+y^2 ]Boole[x^2+y^2≤1],{x,-1,1},{y,-1,1}] C: NIntegrate[Sqrt[x^2+y^2 ]Boole[x^2+y^2≤1],{x,-1,1},{y,-1,1}] D: Integrate[Sqrt[x^2+y^2 ],{x^2+y^2≤1,{x,-1,1},{y,-1,1}}]
\({\lim_{x\to0}}\)\({\lim_{y\to0}}\)\(\frac{tan(x^2+y^2)}{x^2+y^2}\)= <br/>______
\({\lim_{x\to0}}\)\({\lim_{y\to0}}\)\(\frac{tan(x^2+y^2)}{x^2+y^2}\)= <br/>______
\({\lim_{x\to0}}\)\({\lim_{y\to0}}\)\(\frac{sin(x^2+y^2)}{x^2+y^2}\)= <br/>______
\({\lim_{x\to0}}\)\({\lim_{y\to0}}\)\(\frac{sin(x^2+y^2)}{x^2+y^2}\)= <br/>______
limx趋近于0,y趋近于0时,根号x^2+y^2-sin根号下x^2+y^2/(x^2+y^2)^3/2的极限
limx趋近于0,y趋近于0时,根号x^2+y^2-sin根号下x^2+y^2/(x^2+y^2)^3/2的极限
设随机变量(x,y)服从二维正态分布,概率密度为f(x,y)=(1/2pi)*exp[-1/2*(x^2+y^2)],求E(x^2+y^2)
设随机变量(x,y)服从二维正态分布,概率密度为f(x,y)=(1/2pi)*exp[-1/2*(x^2+y^2)],求E(x^2+y^2)
设置曲面边界样式为红色粗线条。 A: Plot3D[x^2+y^2,{x,-2,2},{y,-2,2},BoundaryStyle→Directive[Red,Thick]] B: Plot3D[x^2+y^2, BoundaryStyle→Directive[Red,Thick],{x,-2,2},{y,-2,2}] C: Plot3D[x^2+y^2, BoundaryStyle→Directive[Red,Thick],{y,-2,2},{x,-2,2}] D: Plot3D[x^2+y^2,{y,-2,2},{x,-2,2},BoundaryStyle→Directive[Red,Thick]]
设置曲面边界样式为红色粗线条。 A: Plot3D[x^2+y^2,{x,-2,2},{y,-2,2},BoundaryStyle→Directive[Red,Thick]] B: Plot3D[x^2+y^2, BoundaryStyle→Directive[Red,Thick],{x,-2,2},{y,-2,2}] C: Plot3D[x^2+y^2, BoundaryStyle→Directive[Red,Thick],{y,-2,2},{x,-2,2}] D: Plot3D[x^2+y^2,{y,-2,2},{x,-2,2},BoundaryStyle→Directive[Red,Thick]]
下列函数是多元初等函数的是( ) A: $f(x,y)=\left|x+y\right|$; B: $f(x,y)=\text{sgn}(x+y)$; C: $f(x,y)=\dfrac{\arcsin<br/>x-e^{y}}{~\ln(x^2+y^2)~}$; D: $f(x,y)=\left\{\begin{array}{cc}\dfrac{xy}{~x^2+y^2~},<br/>&x^2+y^2\neq 0; \\0, &x^2+y^2= 0. \end{array}\right.$
下列函数是多元初等函数的是( ) A: $f(x,y)=\left|x+y\right|$; B: $f(x,y)=\text{sgn}(x+y)$; C: $f(x,y)=\dfrac{\arcsin<br/>x-e^{y}}{~\ln(x^2+y^2)~}$; D: $f(x,y)=\left\{\begin{array}{cc}\dfrac{xy}{~x^2+y^2~},<br/>&x^2+y^2\neq 0; \\0, &x^2+y^2= 0. \end{array}\right.$