一简谐振动X=4cos(3t+π/2),则其速度方程为()
A: v=-4cos(3t+π/2)
B: v=-12sin(3t+π/2)
C: v=12sin(3t+π/2)
D: v=-36cos(3t+π/2)
A: v=-4cos(3t+π/2)
B: v=-12sin(3t+π/2)
C: v=12sin(3t+π/2)
D: v=-36cos(3t+π/2)
举一反三
- 一简谐振动X=4cos(3t+π/2),则其速度方程为
- 一简谐振动X=4cos(3t+π/2),则其相位为
- 设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
- 求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)
- 一空间曲线由参数方程x=ty=sin(2t) , -3<t<3z=cos(3t*t)表示,绘制这段曲线可以由下列哪组语句完成。? t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t.*t);plot3(x, y, z)|t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t*t);plot3(x, y, z)|t=-3:0.1:3;y=sin (2*t);z=cos (3*t.*t);plot3 (x, y, z)|t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t.*t);plot3(x, y, z, t)