• 2022-06-04
    设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \)
    A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\)
    B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\)
    C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\)
    D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
  • 举一反三