证明: 任一 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 级可逆复矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 都有平方根.
举一反三
- 证明:如果[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级正定矩阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级实对称矩阵,则存在一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级实可逆矩阵[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex],使得[tex=2.714x1.214]lzPCT5yF+LgDKywlyUEMYQ==[/tex]与[tex=2.714x1.214]Aq6HwIZW7B8JTiPGula26g==[/tex]都是对角矩阵.
- 设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足[tex=2.714x1.214]gghu8bpyeWH2RVFvqU3SVA==[/tex],证明[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]或者是单位矩阵,或者是不可逆矩阵.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 级矩阵,证明[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是反称矩阵当且仅当对任一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维向量 [tex=1.143x1.214]5tXpix/jb7tkCHi6+JV4sA==[/tex] 有 [tex=4.286x1.357]yZS/xggvREXFv3tBWLetFuGoXUxPaaHcVoIpM9CtHhA=[/tex]
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是复数域上一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆矩阵,证明,[tex=1.714x1.214]w5EFtBL4q9r6pzVY0285fA==[/tex]可以表示成[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的一个复系数多项式。
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶非异复矩阵, 证明: 对任一正整数 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex], 存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶复矩 阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 使 [tex=3.0x1.0]+IqgQg4qIKOkoB245qBMJQ==[/tex].