设 [tex=6.857x1.357]2hHcR8Ytk+ATv/tbtrFhB+bH5kzXbno4izjBP9LXHso=[/tex] 证明: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 和 [tex=3.214x1.357]4/ttbAVEBSveXVKOoceuOQ==[/tex] 在 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上有相同的分裂域.
举一反三
- 设 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 是特征为 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 的域, [tex=7.643x1.357]btud4JFbMuvgYfQLcEnwE5avp8UnpnuLTNhSRnnni64=[/tex] 证明 : [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 中不可约或 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 中分裂.
- 设[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]为[tex=0.5x1.0]jedlXyMYwmfVwxRj2j9sSw==[/tex]阶有限域,[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]为[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次不可约多项式. 证明:[tex=1.857x1.357]JLhpe6im6yaVqgdD5OYnKQ==[/tex]整除[tex=3.571x1.357]1Bl0boLIAs4rkF/1q1osRw==[/tex].
- 证明:设 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的代数元, [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的一个首一多项式, 则下列条件等价:(1) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 在域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的极小多项式;(2) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 在 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上不可约, 且 [tex=3.429x1.357]+nzvPBU74mdetNBw41Ue1A==[/tex](3) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上以 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 为根的次数取小的非零多项式;(4) 如果 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上任意一个以 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 为根的多项式, 则 [tex=4.857x1.357]+3zmuKty1AhSMDB3tNdbXzDDg/gxGAj+UD6ur3wtHjE=[/tex]
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 是域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的两个不可约多项式, [tex=1.286x1.214]rkgrF+YaaESwSQDjR6KfWg==[/tex] 分别是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 的某个扩域 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 中的根. 证明: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=1.857x1.357]tPNFVy5slGvSYsD8XFn6/g==[/tex] 上可约当且仅当 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在 [tex=2.0x1.357]meCJel/67w3XgRBnBuDjxw==[/tex] 上 可约.
- 设[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上首系数为[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]的多项式,且在某扩域中有根 [tex=0.929x0.786]ZAiG7AJu8kc6lTV9euHRkQ==[/tex]证明:若[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]在[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上不可约,则[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]是[tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]在[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的最小多项式.