设 [tex=4.286x1.0]Vp+Ha90CaFUQqPcHVI+NOSTSowqNtvrguajbAnCYboo=[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个不同的整数, 若[tex=16.286x1.571]K/pkBMnzf7vZh2CqOFmINac7LpfQ2q12YLv8cIINK/wJ5OI3nFnjOFXYXzDgWhDKvCwhMU3auZ5ZrlqP+VAc+bNmKQgax8Xu7974pP+dp19nTLVNmNJl1EghbS1u7LkU[/tex]证明: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在有理数域上不可约.
举一反三
- 设 [tex=5.643x1.0]DkQMvCDF/4vyPYjHN/R9lbB/2LLigJYNE+lKntlZvD0=[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个不同的整数, 设 [tex=15.143x1.357]Hib6nPgvw27MrD4tVT56JuZToVv1kViqfdrL/Ux/MGRk8sUxDK+x7Vbi3hRxNN4eXuytUVm8V2ceNFsQs71CQ78Cccz4KqK9kUeE3kIeO6U=[/tex],证明: 如果 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 是奇数, 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在有理数域上不可约; 如果 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 是偶数, [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是否在有理数域上不可约?
- 对 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的不同值,分别求出循环群[tex=1.143x1.214]StMMJ6qThnpokZJIPGrdFyP3vrLnUdltYxmLxjw8za8=[/tex]的所有生成元和所有子群。(1) 7; (2) 8; (3)10 ;(4) 14 ; (5) 15 (6) 18 。
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 证明:前[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个自然数之和的个位数码不能是 2、4、7、9
- 证明,设正整数[tex=3.0x1.143]y9waEgZ1sBnU9mr8lb4z6Q==[/tex],并且[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次整系数多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的[tex=3.571x2.214]t52cQAsFAmSV6XlZMXYYyMhzZEX31fySn77CO0Ut4WU=[/tex]个以上的整数值上取值为[tex=1.286x1.143]tkm29yuKKtwOsgBeQx8hOw==[/tex],则[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=0.786x1.214]qWTwUSIEBK1EwCOmwQzggg==[/tex]不可约。次数[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的下界12是否还可缩小?