设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上可导,且[tex=7.214x1.286]/mACCuNKnGtl0E0FaWSkbvU2Fq0S2DqZ17ibYvubDLaO5FvmfT5HZIfFbCA8+slr[/tex],证明:存在[tex=3.714x1.286]asbZPW3YN+S5LA2oFcnF4Q==[/tex],使[tex=3.929x1.286]0o6buAQ5WD2oecMXnej5rMAV8GQlWyol+ExCq32xFVs=[/tex] .
举一反三
- 设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明至少存在一点[tex=3.643x1.357]lTsOOhJ85nTn3mrT2Mx0lw==[/tex]使[tex=6.286x1.429]JZ8spbP5y8lrG0FgeChLIS7LPAFOZNl0MwLjGUb1ZoE=[/tex]
- 设有下列4个条件:(1)[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上连续.(2)[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上有界.(3)[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上可导. (4)[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上可积. 则这4个条件之间的正确关系是 未知类型:{'options': ['[tex=5.214x1.286]otUBslvC+g9E/+QRN3FPcz3QWAnX57gbwSFiq/83tZrJDCQDXng89PvbVLa0ErH1[/tex][tex=3.929x1.286]tD4aFAoM85LoQt+qBgIMMo1Mlcypda8ZwrSysyWdmUM=[/tex]', '[tex=5.214x1.286]otUBslvC+g9E/+QRN3FPc+FFFKMJscOGEYnfyfqpT38HisBD+YsE9Wm8vKAwGBZU[/tex][tex=3.929x1.286]i1AFd+ysL/BK+chgAtWII4EOHwT9ui5FjdIGbZfMEVY=[/tex]', '[tex=5.214x1.286]otUBslvC+g9E/+QRN3FPc63PLXQBY+RInk3VeIGVKAUTVTu9w4rFocSKUD2aYvIJ[/tex][tex=3.929x1.286]tD4aFAoM85LoQt+qBgIMMg94hhXOci2B7g9Vu4mm3UA=[/tex]', '[tex=5.214x1.286]4/5aoaEuruE0zuHBY80AilsCo+Vn8cII8nbhXUGzLxvxZe8HtwdnL7T48PRQeC9D[/tex][tex=3.929x1.286]i1AFd+ysL/BK+chgAtWII4EOHwT9ui5FjdIGbZfMEVY=[/tex]'], 'type': 102}
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 在 [0,1]上具有2阶导数,且[tex=3.643x1.286]33dm3ityTTemCRc5ZsxYkQ==[/tex],[tex=6.571x2.071]9i81kkdiF6aVLw4Z6boxnO7AgoAJz706lR8BAxhRfN53UFSbREToGNjosBflfRksjuR47v1Wf5g1CtgCe2NVNw==[/tex] ,证明:(1)方程[tex=3.714x1.286]0ZoDYEiHpPjb6Gw3Oeomrg==[/tex] 在区间 (0,1)至少存在一个实根;(2)方程 [tex=11.5x1.929]0doxqw2d0aQzw6OeeZxb/bs8P31eHb+5ooXhPxTaxtRxhKSFUcc70MME3syAEJimy7s/+WkFCqXnLOUT77uBwceLCnBUJn/gEZZDrXHET0ToWDYMUpvWn71bViLDAhFgkVtuerPetZ7T48N20ZmPiQ==[/tex]在区间(0,1)内至少存在两个不同实根.
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在闭区间[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上连续,在开区间[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内可导,且[tex=3.929x1.286]yF7pvVInh0eInoseQrSNooOIScDfazfDCPMtH7DfBOY=[/tex],若极限[tex=6.571x2.071]MqOfsQLAB/zeVSdv1WggGLqchS9Lj/X+AmLKN2Mtp6ZjfsC8Zqc0W11hwjAr0ZsNdoUpQrAzHLckJ+1vyLPCig==[/tex]存在,证明:(1)在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内[tex=3.714x1.286]FOh2uNZfgGlH8S+OVIqrUA==[/tex];(2)在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内存在点[tex=0.5x1.286]cFLrzlMvECfU5CTqcvierw==[/tex],使[tex=7.714x2.714]gzM60KSvwplMcF58TO8u2dU/V2piuch2E1X2EWAq8T2tMW5aaDddAeP67XGZSLEjVkGIdLS/IgjJpctXT7GHGPzy+8N8PMGD0wwm/e2gq/M=[/tex];(3)在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内存在与(2)中[tex=0.5x1.286]cFLrzlMvECfU5CTqcvierw==[/tex]相异的点[tex=0.571x1.286]IvGNOcnlsPar7nw7Fd55Kg==[/tex],使[tex=7.214x1.286]gsb/5UaDnUD8XdPUF2TBamf03bdSvuobfcNAeIoG7EUwAqBBb1XK2sOUHMnHmMB0[/tex][tex=7.071x2.5]wOzTTci5ZM5vNI7JuR3k3ApIJCKN2nOrNe2VyFImWPej6nOblfzwRVRZEsKlr/pniR6jHkdk/9kZHHsPyc87eQ==[/tex]。
- 函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上有界是[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上(常义)可积的[input=type:blank,size:4][/input]条件,而[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上连续是[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上可积的[input=type:blank,size:4][/input]条件;