• 2022-07-26
    求该函数在指定点处的泰勒级数,并求其收敛域:[tex=10.143x1.286]EaQAyrNm2kSI7svDAfi4w2FlqPXYsEbTbSbmE6NfZ5+eAnFeWymg0vbuzfhirpKg[/tex]
  • 解:由 [tex=2.0x1.0]pCnw3JsRBb35dEjM0AXbDw==[/tex] 和 [tex=2.143x0.786]7sCqPKbP66hcrOPfxoYK+Q==[/tex] 的幂级数展开式可得[tex=21.214x6.929]qeiYnKXLEhyhuGRg8yLtr5FsDx1YdgerdoaBWB/p36HhMMO1ucgjduBNElLdWiC/CNVw9kpKwUif0OtHMhvc8WgBBV3LCbR2GHM2K9N9F8CjBd4X6MVOUhG0GgZbkslCHlqRi4kyxg9pDbLgg9aJbWToEhVmFo+e/8enzzYNHv2hk/KhpdgBwEEv5T48HkV05HwJcu1X74fpdrrjPDvaxD+GfUZz9h/UNcYOrJI2wp/wJwe9yJrkvXJ6i10K36/geHi1emcwSP65p94pqZb/Pv9UkUXQou4PK13OOtP3IPedBtH7XadILPcKcwm2dvce[/tex]于是[tex=26.0x9.786]qeiYnKXLEhyhuGRg8yLtr0tz18rwvDH4fjZn2Opf9fQ/k+HjHq4lAcYwWZJYkYPm+BFdk4gLpNEyPg25ONv+QC76AOFEaCTJ4UqDLI4YtnUclXtgD1FDpYeUQJGNFN7UiappeQV7EonMhaObXoJxNPWvjspJTWS3kZsBYLWU4r6933PDTNSpEjUs4dx+SLV2Xd5yuSiCtpSmQCueKVkAfonnLszIIYZSUirxekVFkKs3kx/tV/eWiN2OfCE8MsZuM14ql5sN2w/hjFGVUEoqs4IqZLIYR/v0ihQHDnBrhwU9aiMRcY+otAunT/a0u7OLzHfoxGQKGHo4FBXjGQms1xxTSmU1SGtPl7FlP/3oX4fzt1dCp+khMuZ3Rv+cBjdRKLg8qKed2YYzlOwMoNbNuw==[/tex]其中[tex=15.429x4.643]szej6QDKzwjMjdHvUO6EUWeTFK8mQuB5QvxJQibJ3uBJgcwZRxf3Up8u+bbhTokKB1XvG57fjfRTcydUZCFW0Nrc3jdte+OZSV7DrhNLvd+g5/8hC7fe2qRbQqGvmk1sHcW8G2Qx/CF+wVlQerTeU/3hfmlrikLOEFdfJdT6FlHm6oRIPMu20sT0Xubs9gvx4RhAKp/+hjrPVudiolprfA==[/tex]其收敛域为 [tex=5.071x1.357]WafKDm5071vVz9IYJgBhj5opH6LenpHmjOoqLPYsZkw=[/tex]

    内容

    • 0

      下列函数在给定点处的多大范围内能展开成泰勒级数?并求每个函数给定点处的泰勒级数:[tex=4.929x1.5]oplTTWzYb+li8LQIrD2ZsFt+F6/ZW/uknPcsS2lU5Hs=[/tex],在[tex=1.786x1.0]OK0mYXKV9THVWMjDsQSyrQ==[/tex]点.

    • 1

      将函数 [tex=9.571x1.286]LBQTtZLtpmUEQrFQ21Og0zYLlmJjp/ivP06YgMMeXpMeoYoBl1mJN2BxZQvb41cM[/tex] 在指定点处展开成泰勒级数,并指出其收敛半径.

    • 2

      将此函数展开成麦克劳林级数,并求其收敛域:[tex=3.571x1.357]8MBRPhvCF6qRxyofAhjSjQ==[/tex]

    • 3

      将此函数展开成麦克劳林级数,并求其收敛域:[tex=5.143x1.5]IJwuJNbSgcLpUSCQjZhLKPiNlWXzSMzC3VWK34f7ZtY=[/tex]

    • 4

      将此函数展开成麦克劳林级数,并求其收敛域:[tex=6.643x2.429]kadv9dC0YndoPCBWaM4DZ4D2MbNojIH47pt0ju5hd60=[/tex]