设函数z=e2x2y,则=()。设函数z=e2x2y,则=()。
举一反三
- 设方程\({sinz} - x^2yz = 0\)确定函数\(z=z(x,y)\),则\( { { \partial z} \over {\partial x}}=\) A: \( { { 2xyz} \over {\cos z - {x^2}y}}\) B: \( { { 2xyz} \over {\cos z + {x^2}y}}\) C: \( { { xyz} \over {\cos z - {x^2}y}}\) D: \( { { 2xy} \over {\cos z - {x^2}y}}\)
- 4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
- 设\(z = z\left( {x,y} \right)\)是由方程\(2{x^2} + {y^2} + {z^2} - 2z = 0\)确定的隐函数,则\( { { \partial z} \over {\partial x}}=\)( )。 A: \( { { 2x} \over {1 - z}}\) B: \( { { 2x} \over {z - 1}}\) C: \({z \over {1 - y}}\) D: \({z \over {y - 1}}\)
- 设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)
- 设方程\(z^2+y^2+z^2 = 4z\)确定函数\(z=z(x,y)\),则\( { { {\partial ^2}z} \over {\partial {x^2}}} =\) A: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2+ z)}^3}}}\) B: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\) C: \( { { { { (2 - z)}^2} -{x^2}} \over { { {(2 - z)}^3}}}\) D: \( { { { { (2 + z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\)