• 2022-07-26
     一无限长直线, 线电荷密度为 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex], 如果 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]点离直线的距离是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]点的 2.0倍, 求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]、[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 两点之间的电势差.
  • [tex=18.643x2.786]iYOtBEFd2FjFk7s2yPwFAAQ3rKpqjH+25uihkEJyshNRuoGvaFZ+D/7NBtQCeUBp2HzwyoJU779SIj9wRlYxbv1bbbzgXtS6PGbNr9RTy/jxQ/2Ffs6t1N2xwayUFIq9FAMnQslsz/oo8KEWd/dqZbjuzu3eq/7o3U55OjuXH8YbYDgRv88sQKQxIDqwWMweQyXa8ANApxdkRRkI1gyZ0g==[/tex]

    举一反三

    内容

    • 0

      进行 4 次重复独立试验,每次试验中事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 发生的概率为 0.3 .  如果事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 不发生,则事件 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 也不发生;如果事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 发生 1 次,则事件 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 发生的概率为 0.4 ; 如果事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 发 生 2 次,则事件 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 发生的概率为 0.6 ; 如果事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 发生 2 次以上,则事件 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 一定发生. 求事件 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 发生的概率.

    • 1

      设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为同阶方阵,举例说明,“若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]相似,[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有相同的特征值”的逆命题不成立。 

    • 2

      两个信号 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 传输到接收站已知[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 错收为[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的概率为 0.02,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 错收为[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的概率为0.01而 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 发射的机会是[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的2倍,求:(1) 收到信号 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的概率(2) 收到信号 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的概率(3) 收到信号[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 而发射的是信号[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的概率

    • 3

      设[tex=2.214x1.214]YsxUk3RpCEL54ROD5kt0RJo8Jg3PZ9YFvmPV4aO5za/jW8pAoxQ3l0yVPiczodW7[/tex]为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵,下列命题中正确的是 未知类型:{'options': ['若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 合同,则\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 相似\xa0', '若\xa0\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]\xa0相似,则\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]合同', '若\xa0\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]等价,则\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]\xa0合同\xa0', '若\xa0\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]\xa0合同,则\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]等价'], 'type': 102}

    • 4

       最短曲线问题:在所有连接 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 点和[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]点的平面曲线中,求一曲线使得从 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 点到 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 点的曲线弧长最短。[br][/br][img=400x288]17a6eda6c35ccf5.png[/img]