举一反三
- 对 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的不同值,分别求出循环群[tex=1.143x1.214]StMMJ6qThnpokZJIPGrdFyP3vrLnUdltYxmLxjw8za8=[/tex]的所有生成元和所有子群。(1) 7; (2) 8; (3)10 ;(4) 14 ; (5) 15 (6) 18 。
- 设函数[tex=17.0x1.5]3Qc8zAEodU/NXu/GRWXrWjA+U7BzHxYC9q1rJiEDxXAtMY/8hbCNs0nDXw4B8DhUK+HRgcuSMWGXl6kpCZNjFA==[/tex]([tex=5.643x1.0]O9qGQWb1YzoOCaRetv+AwVqYli7CsYhCf8ic6LfFqw8=[/tex]为实常数),证明: (1). 若[tex=3.071x1.214]Iigx1lsMFuJFc9Rt9KemEw==[/tex] 且 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 为奇数,则方程 [tex=3.143x1.357]GaUU+prLnDPZRkTgFIz5aw==[/tex] 至少有一负根。 (2). 若 [tex=3.071x1.214]b7/onK93Rg693Rvz+06n0Q==[/tex] 且 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 为奇数,则方程 [tex=3.143x1.357]GaUU+prLnDPZRkTgFIz5aw==[/tex] 至少有一正根。 (3). 若 [tex=3.071x1.214]b7/onK93Rg693Rvz+06n0Q==[/tex] 且 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 为偶数,则方程 [tex=3.143x1.357]GaUU+prLnDPZRkTgFIz5aw==[/tex] 至少有一个正根和一个负根。
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 把 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个“0”与 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个“1”随机地排列,求没有两个“1”连在一起的概率.
- 从供选择的答案中选出填入叙述中的方框内的正确答案计算非同构的根树的个数(1) 2 个顶点非同构的根树有 [tex=2.143x2.429]rVbjoKgaBYChmT2nPEBA4Q==[/tex] 个(2) 3 个顶点非同构的根树有 [tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex] 个(3) 4 个顶点非同构的根树有 [tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex] 个(4) 5 个顶点非同构的根树有 [tex=2.214x2.429]ZPUE0nZuXRHoore7NT++rQ==[/tex] 个供选择的答案[tex=6.071x1.286]GZbiT2P8T8KVyVUEWQpYyjIiVTkGekbnZrmhPI/Gp54=[/tex]:① 1; ② 2; ③ 3; ④ 4; ⑤ 5; ⑥ 6; ⑦ 7; ⑧ 8; ⑨ 9; ⑩ 10
内容
- 0
试证: 每个正整数[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 都可以写为 [tex=6.0x1.429]w+IPBTmtyZwgm1DlaRK+LVtT06b9t5wmRFhXGmlbG0I=[/tex]这里[tex=2.429x1.0]jMQYQn5d4nOsh4gT8I170w==[/tex]都是整数
- 1
设(1[tex=2.143x1.357]ZeFHV7/B9tbWRcAnHTJTkw==[/tex]在点[tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex]解析,[tex=4.286x1.357]+uO54rrM54jdyvvqepiorXp6khglXMdiTzkQVrsIEos=[/tex];(2)[tex=3.643x1.357]XlKeY9cidN1P+CLNhKp4hg==[/tex]以[tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶零点。试证:对于充分小的[tex=2.357x1.071]zaTYmiB02c3fW3zvAQdizg==[/tex],能确定[tex=2.286x1.071]U2vn5If3wiVpiGUUuu/xGA==[/tex],使对满足[tex=4.714x1.357]KYKTcONB2QsBkF7efgqHgBb7fN8boxvZfYFDI7Xx5/U=[/tex]的[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex],函数[tex=3.071x1.357]VMKghsSNiTolxYNTkwXHOQ==[/tex]在圆[tex=4.429x1.357]BaERDnmQZjCGS/ZSW2O0X/FlFnWYVfU9+UDJKrAsXkPXV8y9mm45Ek+eHfJZzbkO[/tex]内恰有[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个一阶零点。
- 2
证明:前[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个自然数之和的个位数码不能是 2、4、7、9
- 3
在[tex=4.5x1.214]GK+NSLRH8xaRJJ8iGzp8YhaLb1JrN4SkQAUcZkIx4uk=[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]元排列中,(1) 位于第[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]个位置的数1作成多少个逆序?(2) 位于第[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]个位置的数[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]作成多少个逆序?
- 4
证明 8.1 节层次分析模型中定义的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶一致阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有下列性质:(1) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的秩为 1 ,惟一非零特征根为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex];(2)[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的任一列向量都是对应于[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的特征向量.