利用积分区域的对称性和被积函数关于x或y的奇偶性,计算下列二重积分[tex=11.714x2.643]48DakWD4Tnj9yK9OaxCH/RGhG7bvSw2MA9hco3qkuMhLFEjzrC1yL0Y76qzoFjayQ3RlnneMeeg3bxWnitW+/g==[/tex]
举一反三
- 双曲线x^2/16-y^2/9=1的渐近线方程为() A: y=±16x/9 B: y=±9x/16 C: x/3±y/4=0 D: x/4±y/3=0
- 设函数$y = f({x^3})$可导,求函数的二阶导数$y'' = $( ) A: $6xf'({x^3}) + 9{x^4}f''({x^3})$ B: $6f'({x^3}) + 9{x^3}f''({x^3})$ C: $6xf'({x^3}) + 9{x^3}f''({x^3})$ D: $6{x^2}f'({x^3}) + 9{x^3}f''({x^3})$
- 已知4x-3y-3z=0,x-3y+z=0(x≠0,y≠0,z≠0),那么x:y:z A: 4:3:9 B: 4:3:7 C: 12:7:9 D: 以上结论都不对
- 有代码片段:function f(y) {var x=y*y;return x;} for(var x=0;x< 5;x++) {y=f(x);document.writeln(y);}输出结果是( )。 A: 0 1 2 3 4 B: 0 1 4 9 16 C: 0 1 4 9 16 25 D: 0 1 2 3 4 5
- 设积分区域D:x2+y2≤3,则二重积分 A: -9π B: -3π C: 3π D: 9π