• 2022-07-28
    设[tex=1.786x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]是复数域上[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵.证明,[tex=1.571x1.0]JLMbVw4e37VvhkU494+8Ew==[/tex]与[tex=1.571x1.0]CXAfKGuWUtI+Dzsv5Km60Q==[/tex]有相同的特征根,并且对应的特征根的重数也相同.
  • 当[tex=1.786x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]都是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵,[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵时,有[tex=22.929x2.786]075gCzZzsMRb6HYXYk9X9/bfV3n46PyUCIzjKGDYWdwUnkDRqX3rqPY740ZwSAymnV+LS53RB+ATHhphFZryjfrMrrF6HZH1rol2mGtII4ptZjBrFPVJMdnagl9aLwvleWNqBzKjepeeRLGBExpyh8/6CTMrCYOZBbr/9xUBDkdGiwiR4VwyKgXFf3ufwGBr+F9cIo7wHLG0h95AR6qpDPQwOvV6WuCkiqNHh7GfHcoSJ3qUKexoo3Fl9wCjHj2wxZM+T4UbXN/2k3Qe8sIt570NJjxOP/ThVuhutcVmSOGPPafYvQBhdHPInFEYKqY1[/tex]于是[tex=23.357x2.929]075gCzZzsMRb6HYXYk9X97yk8ZphJRoYIGv//kD9HF4uoOsg+X4AynF2c+BbGJogcN4Gw3Ix7A+A9CFrt6NcQg2vJUI8R4TUrFAyA0wr9ciT7CwuMWr3NIRcQ7/w851CROknczF5zeO5y+edoKdkyS1qUKsg7i5LEFhsBJUwMoGUy4yF/Hy+Z671pgJOJ6HUa3oI5fhq0xkdBBuxs6HmxXSg6jkmq/AaazAjuCoSauN6sxgkNZ9fkVU6lJAjQJ/xqWc9B4EQw8KwptO8bdfoaSS/oIEEbIAOc83JwoZ1bR0TK8lujcqYAO+ljgRsqSwG[/tex]可见[tex=5.786x2.786]jcCMHflCR8OS9TosV6N5vDLQJoU0UIMLCebhVXiNaB+qqHTbtVvHK7P4avX3+kbdPydosV6+ymWt982/I20dEw==[/tex]与[tex=5.786x2.786]jcCMHflCR8OS9TosV6N5vN1QYvNr3xWIIYFz5bg7xlX/hELocSik7125DReC5G0c60xiOgKn0lb5zbUp7CDyZw==[/tex]相似,故有完全相同的特征根.容易看出[tex=20.714x5.929]Ck4j1YFlvVH5wCAykOEMi56LA7qY9ubNk441brJKUpOaoiJF5zuCOAHa72x2XvS9GVfPk7LwF63tTiwAuYdn0JLC4ciILxHK56j517dn1E7QAGRvhTC6iQgSXvtknUaLQ9xEBonIAaTOvA8KbFL5+Sl23Xyq1oUIrB0frcXz+OltBAvJoOMYpdEapJwD5g2rjSx3q6OelRLiuMQB9apZuiAIdhxmbApSNHDLwjyHZrlPWqzuHaHbvdxwdOo76w3E0pAnl1ZXb+XLp8e1/dNB5DR+CSwqNWhihBav9k4pau7WXlInxeqDIjUzrMiGslEG8HmG/zpkGct9FIrQGs9q6gWLkznGrFtBirj8ey/sZsqnQKgT9xZcz5klWeb6FC+lrf1l8o17sjWwElbc4ehhb9huioUPr25M0dLmJensRE4QyV1VfYR2g9/Y3ngNVUkRvI9gcDpLg/pc8XYLf8sPEg==[/tex]因为它们有相同的根,则[tex=6.071x1.357]NovbxKl63Ey/milqTcbe/8c1VhEutoTsnpdJeRv8XQO/sICp46XYijyx/sLnUs3j[/tex]与[tex=6.071x1.357]NovbxKl63Ey/milqTcbe/8c1VhEutoTsnpdJeRv8XQNVIWbA0iRCc4b9enTxooAo[/tex]有完全相同的根,即[tex=1.571x1.0]JLMbVw4e37VvhkU494+8Ew==[/tex]与[tex=1.571x1.0]CXAfKGuWUtI+Dzsv5Km60Q==[/tex]有相同的特征根,且对应特征根的重数也相同.

    内容

    • 0

      设[tex=1.786x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]都是复数域上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵,证明:[tex=12.286x2.786]Uyz5s0rmQIddjb5Jc2T/YV6rz8fC5zBP0U1m3o2lnxCoyePy6+FllmMMV9F8uhwZfTtfhYV62xjY2mgp/5i8Y/KppTbpO0HJ0ZXECo4Ad2A=[/tex],其中[tex=2.786x1.357]dxveP7vWd43uPFftgS/gpQ==[/tex].

    • 1

      如果 , [tex=1.571x1.0]H/+/tjMT6G7bDjni13g9xw==[/tex]都是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶正定矩阵,证明:[tex=2.286x1.143]ibPZixdhTGkPvSlf9Hm3BA==[/tex]也是正定矩阵。

    • 2

      设[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]是复数域上一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶对称矩阵,证明存在复数域上一个矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex],使得[tex=3.357x1.214]cEyQZ7EYqIDjAlbRYg3lAQ==[/tex]

    • 3

      证明:如果数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵[tex=1.786x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]满足[tex=5.357x1.143]tujewJDoKiNIivsDCfs52Q==[/tex],那么[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]不可逆。

    • 4

      设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]和[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]为同维非奇异方阵,试证明[tex=1.571x1.0]JLMbVw4e37VvhkU494+8Ew==[/tex]和[tex=1.571x1.0]CXAfKGuWUtI+Dzsv5Km60Q==[/tex]具有相同的特征值集.