• 2022-07-28
    求下列微分方程[tex=8.643x1.214]/1pHGJFamCI/MKgMfg4a9NZg2aItHG4mvHXEWpFhj/U=[/tex]
  • 解:分离变量,得[tex=7.643x2.643]ikjGQ0OXBvYTuBHcxjisJ27KzWDRoFArh2w5D+Rd6/tayrPEz1CsfXaBYCRMPf8/l0KIT5UdRfAkhAWp/UIGDz9CbopaGy7tidmiqs7BO7U=[/tex]两边积分,得[tex=9.071x2.357]0Jd07+iqmGp2nwHa61BlRG7nezrFiZIRW6i5n0UThQo58a7MOb5Y9sjxeg3m+6WFQBb1YUjcuHDymWFjmXTNtg==[/tex]即 [tex=7.286x1.429]++03nnD3BMdPRHyS9oIdkOaEg/CSBJoJZzCAqWgRKks=[/tex] ([tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex] 为任意常数)

    内容

    • 0

      求由下列方程确定的隐函数的微分或全微分:[tex=9.143x1.214]jW18PL5dh49e95+EiQ3+isFM5KX0UoVYgvrlrkvPAm4=[/tex],求[tex=4.0x1.5]WQeE8RyM9J4OXwmaSKvr8D9FmqS9FTJrpVoTpKBAF2k=[/tex]。

    • 1

      以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)

    • 2

      求微分方程 [tex=3.357x1.357]Zn0eLrpNOsewbZTO9xWyUYJhRac8D5zt+cg2HFGcN/U=[/tex] 的通解

    • 3

      下列方程中是一阶微分方程的是[input=type:blank,size:4][/input]. 未知类型:{'options': ['[tex=8.0x1.571]SnLzj4UlSfnGqNtEzxfZSuZwslGsWxsvP2Y+yf7H578Vefe1Ol/nJT135DjkdnSNNikL3arAj80BjvPHaHCDiA==[/tex]', '[tex=10.571x1.571]JR4yrHJRIZfJXwhFSObwrfajFnWUvXzM/YiA3M6aDKuVBZ8I+7v5iXTXdA3E6Rm4vOE2BCfPwFP2rmRygXKEUDk1qLsNDCJ2p8GEbfCSr2s=[/tex]', '[tex=5.643x1.357]m0sKckxx+jZ9iltApBtB23TBISIOx/g0judcsS+akNFZrUNCq3g+BIVQwGbQEh/C[/tex]', '$y^{(4)}+5 y^{\\prime}-\\cos x=0$'], 'type': 102}

    • 4

      利用[tex=3.5x1.214]DUiJRzeUaHlAVdBYesnF4g==[/tex]变换求下列微分、积分方程的解[tex=15.929x1.429]eE9dXkpN2effVrNkAbXJmLgD8rAgyUEVDSee03cz5XXpKsDxEHAH8+4zmWVwU6wx+bJqCWyFRBCVmmOR4+rsD3NfeuxcPgsIyzbxN7e1aAE=[/tex]