• 2022-07-28
    甲从[tex=3.643x1.214]JH/h4v15Kf5Z52evRQrzWA==[/tex]中任取一数,若甲取出的是[tex=0.571x1.0]E3ICGbJWMD1XtKoJZJuGrg==[/tex],则乙从[tex=2.357x1.0]6Ayj+z77vxVpl6Kuw3GxeQ==[/tex]中任取一数,分别求甲、乙取出的数[tex=1.214x1.214]BrCDDY9cc4CCEczFkSUkLw==[/tex]的分布律.
  • 所有可能的取值为[tex=4.286x1.214]bZlXCr+pZkDluAdQN1nLpQ==[/tex],容易得到[tex=11.071x2.357]pVfnGy44wOcEKM3hShRo05OEi8gsVkr+5nUA87QUfkweIqvIJIdcfhrZOafKLS1O[/tex],即[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]的分布律为[tex=10.429x4.071]I08GkjPu5ilZ1cL3oVOjRFpB3JbVEhi5sAKrjCKL9LOnbB78nMS349d2NL5YGk1UTauoz5r5FbDv0WFqb9h/3PhpVYLQWGowF38mD1NLbXSIdeXF/8t7owfCkho6zrEfYyM6uHYGyfPWCmAidOjQgsm8R2iBFI+0g+cVTH3sqU6niFd5yalZCw9twjyKCOTqb04s9RSGJiL44hI6ZFCwbg==[/tex][tex=0.5x1.0]x1bygMLZjErpcp7AR7KkLQ==[/tex]所有可能的取值为[tex=4.286x1.214]bZlXCr+pZkDluAdQN1nLpQ==[/tex],则由全概率公式[tex=14.929x7.357]ifE9NWj3X6IpRVSt3T5ITrqRv00HDbPNg78OMFPtRMnjVuNJ0h9EJoZQv9Aqrcsx5hp6n4J7/ILDlpDOEnz9M9El6LIpMLJFAG1vopJ5lXQwBFEHgJMMcNsrGhk8KiU2+RzEN/QnUa57nF8ioUXUDW5iwnIZ8y1no/oP7v6No2InZVFtoDdN0xt6vtDbz6YZf1XMRfcTF8q1Z9QqNUy4GQ==[/tex][tex=14.929x7.357]a0s3MH7cLIdmiBRR0YN069LjTcMATiMAtSHzCzh8VgVFFqvSearJQXtws9T+WUEO0obKgYjJrIbVWxTkTHj7Bkrtlvx3S8HOMvL3dqvA4T7Hm+k3NKqKputR8iI59GdC+WlTCpYVomvQnRINoeg5UUxk5bhQiJcpSLNJ3M3ydH0HlJXvHaPktlOicCIv73/6/mnLd+3Iw68+nhPshwPP8w==[/tex][tex=14.929x7.357]a0s3MH7cLIdmiBRR0YN063m1lS5lChEjujtfX4eNOzDjmO0FIS2iWuR2C2geTBtTDn1mNDJAKnl4YPQDC55DrVV2qOHEFjkjDV4+fK0XylxeHKzCTBNIvnoVODPbUowuJvveMr9+G+4GkYnsiKUggmeTzZ1lhFUSih3QHw6NXG85pd0DzXEj19Iaox/8vyprF83ouzLNUHZyb1C0avqLyA==[/tex][tex=14.929x7.357]a0s3MH7cLIdmiBRR0YN06wiGO+AlgUoSoQT55DAaHftpcdL4EexJLdVYKRwUM3BSomRLIhTQJ/YbKKWELQH2bsr58Edf1++37HP5Cjja0Xlfbkh3lk1A/+nnqztkaNWmQ3hAyYK17UnFCaTSF4M2OEVsJQgFKQwzL2T9TGAjD5tOwxXbFWCEOAVv/ZJRZ9tTLNIep7Dtv7K4fCr/liix6A==[/tex][tex=14.929x6.214]a0s3MH7cLIdmiBRR0YN06/pAq9ZBimBu0GLCbrVoH+aQzFKdvrfSea1dBSrPi5nBEuAz6LPFM8D4+iikCeYKMl51k7PWk8bzhyvGqMJMhSk8xEFYYBEjHUSsoHneNdPpYzNYtBNw+jmQ7VYnNg6fuUOCAtQHXCkKzvC18CB2KztjKtXWrXM32MgIvIFcWsaz[/tex]即[tex=0.5x1.0]x1bygMLZjErpcp7AR7KkLQ==[/tex]的分布律为[tex=15.429x4.071]I08GkjPu5ilZ1cL3oVOjRPN+1zNrndnCsyZbHheeJe5mLMkG5S9Pw/yNZrdJdoG07XEtUN7ae2UKyX8OrEKf/wFsoOBYwDIL8L0i43at1jOXNb2OpcAniahsciCZP0NSrEvinoVeXE1BqPWKu7bR2WbdlsA3oP1f2BpiD3JRTslN8p/NsDhBOk7TBdY8IHStQk6xvrDigZyKvTPlXtYl5TbI08pC4e47nWxfou5ANhg=[/tex]

    举一反三

    内容

    • 0

      从 [tex=3.643x1.214]JH/h4v15Kf5Z52evRQrzWA==[/tex] 中任取三个数字, 则这三个数字中不含 1 的概率为[input=type:blank,size:4][/input]

    • 1

      甲、乙二人轮流投篮,直到有一人投中为止.假定每次投篮甲、乙投中的概率分别为[tex=3.0x1.214]Q8QihSyfdSGgDV6RI+9ueQ==[/tex].若甲先投,[tex=1.214x1.214]BrCDDY9cc4CCEczFkSUkLw==[/tex]分别表示甲、乙的投篮次数,求[tex=2.214x1.357]oIxZeCdF+SIXA8nz0qZ5nA==[/tex]的分布律.

    • 2

      从1,2,…,20中任取一个数,设取到数[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]的概率与[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]成正比,则取到的数是3的倍数的概率为[input=type:blank,size:6][/input]

    • 3

      从 [tex=3.643x1.214]JH/h4v15Kf5Z52evRQrzWA==[/tex] 五个数码中,任取 [tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex] 个不同数码排成一个三位数. 求:所得的三位数为奇数的概率.

    • 4

      从 [tex=3.643x1.214]JH/h4v15Kf5Z52evRQrzWA==[/tex] 五个数码中,任取 [tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex] 个不同数码排成一个三位数. 求: 所得的三位数为偶数的概率;