利用matlab导入puma560模型,已知q=[0 pi/2 -pi/2 0 0 0],qd=[1 1 1 1 1 1 ]此时的科氏矩阵是http://edu-image.nosdn.127.net/3B37552850A33BC223A3E90AD4DDD240.jpg?imageView&thumbnail=890x0&quality=100
举一反三
- 利用matlab导入puma560模型,已知q=[0 pi/2 -pi/2 0 0 0],qd=[1 1 1 1 1 1 ]此时的科氏矩阵是[img=463x144]180362105931aac.jpg[/img]
- 某max型线性规划标准型的系数矩阵为 [ A | E ]形状(E表示单位阵),目标系数为(2 -1 3 4 2 0). 模型的单纯形矩阵经过一系列迭代,化为如下最优典式: 0 0 1 1 1 0 | 8 1 0 0 1 1 1 | 1 0 1 0 1 0 1 | 2 0 0 0 0 -3 -1 | -10则对偶模型的最优解为 ( ) A: (4 2 0) B: (4 5 1) C: (0 3 1) D: (3 2 -1)
- MATLAB中,A=[0:0.5:2]*pi,那么sin(A)= [0 1 0 -1 0]。
- For the integral $\int_0^{+\infty}\frac{dx}{(x^2+p^2)(x^2+q^2)}$, which of the following statements are CORRECT? A: $\frac{1}{q^2-p^2}[\frac{1}{p}-\frac{1}{q}]\frac{\pi}{2},p>0 \ q>0;$ B: $\frac{1}{q^2-p^2}[\frac{1}{q}+\frac{1}{p}]\frac{\pi}{2}, -p>0 \ -q>0;$ C: $\frac{1}{q^2-p^2}[\frac{1}{p}-\frac{1}{q}]\frac{\pi}{2}, p>0 \ -q>0;$ D: $\frac{1}{p^2-q^2}[\frac{1}{q}+\frac{1}{p}]\frac{\pi}{2}, -p>0 \ q>0.$
- 若定义int a[2][2]={1,2,3,4},则a数组的各数组元素值分别为()。 A: a[0][0]=1,a[0][1]=2,a[1][0]=3,a[1][1]=4 B: a[0][0]=1,a[0][1]=3,a[1][0]=2,a[1][1]=4 C: a[0][0]=4,a[0][1]=3,a[1][0]=2,a[1][1]=1 D: a[0][0]=4,a[0][1]=2,a[1][0]=3,a[1][1]=1