0403 幂级数的和函数在收敛圆周上至少有一个奇点。
正确
举一反三
内容
- 0
每一个幂级数在它的收敛圆周上处处收敛. 答
- 1
1.幂级数的收敛半径为[填空(1)],收敛域为[填空(2)] 。2. 幂级数的收敛半径是[填空(3)] 。3. 若幂级数的收敛半径为,则幂级数的收敛区间为[填空(4)] 。4. 若级数在处收敛,在处发散,则该级数的收敛域为[填空(5)] 。5. 已知幂级数在处收敛,在发散,则幂级数的收敛域为[填空(6)] 。
- 2
设幂级数和的收敛半径分别为,则和级数=+的收敛半径.
- 3
若幂级数在处收敛,则此级数在处.
- 4
设幂级数 在 处收敛,则此级数在 处?55dd587ce4b01a8c031ddb41.png55dd587ce4b01a8c031ddb42.png55dd587c498eb08ca4166a9c.png