举一反三
- 设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]的联合分布列为[img=428x112]1791c55af868683.png[/img]判断[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]的相关性和独立性.
- 设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]的联合分布列为[img=428x112]1791c55af868683.png[/img][tex=7.286x1.357]YHF+oQgGMnKBSNAyJ4AFRRM7uRbR83QDsA1VpspfC5E=[/tex]
- 设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]在圆域[tex=4.5x1.429]ptnhK+BqPbYzfoYOryGrkA==[/tex]上服从均匀分布(1)求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]的相关系数[tex=0.571x1.0]BMX8X5xI0h1MuijqrEhCyw==[/tex];(2)问[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]是否独立.
- 设 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 相互独立且 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 的分布律如下,试写出[tex=2.643x1.357]JzSsOLHw1BX893c+vpTwSw==[/tex]的分布律[img=907x80]17897c11a296c50.png[/img]
- 设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]独立,[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]在区间[tex=2.0x1.357]ypa7sVIsGi+dtDPUtrup2w==[/tex]上服从均匀分布,[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]服从指数分布[tex=1.786x1.357]awqvNHHPYkNPyosONmVKxg==[/tex],求二维随机变量[tex=2.643x1.357]aikhN0DJgQzlD9+fBIp9pQ==[/tex]的联合概率密度.
内容
- 0
设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]独立,[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]在区间[tex=2.0x1.357]ypa7sVIsGi+dtDPUtrup2w==[/tex]上服从均匀分布,[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]服从指数分布[tex=1.786x1.357]awqvNHHPYkNPyosONmVKxg==[/tex],求概率[tex=3.643x1.357]xOqWhxutW/jDEtv3HdF7DBtYx0Hk7e1l3Omnpa63lD0=[/tex].
- 1
设随机变量 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 相互独立,且 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 服从参数为 [tex=0.643x1.0]f9ECb56a0KLfwkSKv7TvaQ==[/tex] 的 Poisson 分布,[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 服从参数为 [tex=0.5x1.0]YCaAGj51cMYuHuypE42enQ==[/tex] 的指数分布,若 [tex=8.143x1.357]gBDYYCFh0ZruZ7ipUfoV7lGlCEj8FD2svJh3zTJAU/Y=[/tex],试求:[tex=0.643x1.0]f9ECb56a0KLfwkSKv7TvaQ==[/tex] 与 [tex=0.5x1.0]3QKgXMFD1jh2Zp5MD3bSdA==[/tex] 。
- 2
一某消费者消费[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]两种商品时,无差异曲线的斜率处处是[tex=1.929x1.357]3msWtCKrFZNY/yAjjZifpw==[/tex],[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]是商品[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]的消费量,[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]是商品[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的消费量。[br][/br]对[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的恩格尔曲线形状如何?对[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的需求收入弹性是多少?
- 3
设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]、[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]独立同分布,在以下情况下求随机变量[tex=6.214x1.357]YU7FPKoqVxj3MDB7bYUtDA==[/tex]的分布列.[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 服从 [tex=2.571x1.214]nISkG2PgMAuVDrRqwMRtOA==[/tex]的 (0-1) 分布 .
- 4
设随机变量[tex=3.5x1.357]Cn1erK6XFDronZMR0otx+w==[/tex],随机变量[tex=5.929x1.357]EKa/otzo8ngUIqezJYs2iA==[/tex].试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]的联合分布律及边缘分布律.