举一反三
- 设 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]、[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 相互独立且分别具有下列的分布律:[img=554x70]178ac756ebb5af9.png[/img]写出表示 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的分布律的表格。
- 设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]的联合分布列为[img=428x112]1791c55af868683.png[/img][tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]的相关系数[tex=0.571x1.0]hPvvoj2wbfpbBBU9Fgv0pA==[/tex]
- 设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]的联合分布列为[img=428x112]1791c55af868683.png[/img]判断[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]的相关性和独立性.
- 设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]在圆域[tex=4.5x1.429]ptnhK+BqPbYzfoYOryGrkA==[/tex]上服从均匀分布(1)求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]的相关系数[tex=0.571x1.0]BMX8X5xI0h1MuijqrEhCyw==[/tex];(2)问[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]是否独立.
- 设随机变量 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 相互独立,且 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 服从参数为 [tex=0.643x1.0]f9ECb56a0KLfwkSKv7TvaQ==[/tex] 的 Poisson 分布,[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 服从参数为 [tex=0.5x1.0]YCaAGj51cMYuHuypE42enQ==[/tex] 的指数分布,若 [tex=8.143x1.357]gBDYYCFh0ZruZ7ipUfoV7lGlCEj8FD2svJh3zTJAU/Y=[/tex],试求:[tex=0.643x1.0]f9ECb56a0KLfwkSKv7TvaQ==[/tex] 与 [tex=0.5x1.0]3QKgXMFD1jh2Zp5MD3bSdA==[/tex] 。
内容
- 0
设 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 相互独立且都服从 [tex=2.929x1.357]fA6kpifpzLAp45Ev+6j6KQ==[/tex] 分布,试求 [tex=6.286x1.571]NrLkP+1LgOMHpLWu64AHkfbehpUaS2dKjuDzxj49BzI=[/tex] 的分布密度。
- 1
设 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 相互独立且都服从 [tex=2.929x1.357]fA6kpifpzLAp45Ev+6j6KQ==[/tex] 分布,试求 [tex=3.714x1.143]bAuRnS0EozFwlT9vxryEWA==[/tex] 的分布密度。
- 2
设[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]相互独立,证明[tex=17.643x1.5]Jgjp07WaxBmCSN8URZ5n3ysdqIKIjbcU3pyvp30w6j83PpsxFRf70pzBgR1plxcT5QqwfB37r3EDxyJ/+SzSdA==[/tex].
- 3
设随机变量[tex=3.5x1.357]Cn1erK6XFDronZMR0otx+w==[/tex],随机变量[tex=5.929x1.357]EKa/otzo8ngUIqezJYs2iA==[/tex].试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]的联合分布律及边缘分布律.
- 4
设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]独立,[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]在区间[tex=2.0x1.357]ypa7sVIsGi+dtDPUtrup2w==[/tex]上服从均匀分布,[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]服从指数分布[tex=1.786x1.357]awqvNHHPYkNPyosONmVKxg==[/tex],求二维随机变量[tex=2.643x1.357]aikhN0DJgQzlD9+fBIp9pQ==[/tex]的联合概率密度.