如果离散信号f(k)的Z变换为F(z),则f(k+1)的Z变换为()
A: zF(z)
B: z[F(z)-f(0)]
C: z[F(z)+f(0)]
D: zF(z)f(0)
A: zF(z)
B: z[F(z)-f(0)]
C: z[F(z)+f(0)]
D: zF(z)f(0)
举一反三
- 已经f(t)的Z变换是F(z),那么f(kT)的Z变换是? A: F(z) B: zF(z) C: kF(z) D: F(kz)
- 若函数f(z)在z_0不连续,则: (lim)┬(z→z_0 ) [f(z)-f(z_0)]=0|(lim)┬(z→z_0 ) [f(z)-f(z_0)]≠0|(lim)┬(z→z_0 ) f(z)=f(z_0)|(lim)┬(Δz→0) f(z_0+Δz)=f(z_0)
- 若f(z)在圆|z|<R内解析,f(0)=0,|f(z)|≤M<+∞,则(1)|f(z)|≤;(2)若在圆内有一点z(0<|z|<R)使
- 序列f(k)=-ε(-k)的z变换F(z)=() A: B: C: D:
- 信号f[n]=u[n+1]的Z变换为F(z)=z/1-z-1,0<|z|<∞。